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Abstract. Let V be an n-dimensional vector space over the finite field Fq and
T a linear operator on V . For each k ∈ {1, . . . , n} we determine the number of

k-dimensional T -invariant subspaces of V . Finally, this method is applied for

the enumeration of all monomially nonisometric linear (n, k)-codes over Fq .

0. Introduction

Let q be a power of a prime p, Fq the finite field with q elements and n a
positive integer. Consider V an n-dimensional vector space over Fq, without loss
of generality V = Fn

q , and a linear operator T on V . A subspace U of V is called
T -invariant if TU is contained in U . It is well known that the T -invariant subspaces
of V form a lattice, the lattice L(T ) of T -invariant subspaces.

We show how to determine the polynomial σ(T ) =
∑n

k=0 σk(T )xk ∈ Q[x], where
σk(T ) is the number of k-dimensional, T -invariant subspaces of V .

According to [2] the lattice L(T ) is self-dual, which means that the coefficients
of σ(T ) satisfy σk(T ) = σn−k(T ) for 0 ≤ k ≤ n.

In the sequel we use basic facts about the decomposition of a vector space into
primary components or the decomposition of a primary vector space as a direct
sum of cyclic subspaces. The corresponding theory can be found in textbooks on
algebra, e.g. in [8, mainly chapter III].

In the final section we apply our method to the enumeration of monomially
nonisometric linear codes.

1. V as an Fq[x]-module

The Fq-vector space V is a left Fq[x]-module when we define the product fv
of f =

∑r
i=0 aix

i ∈ Fq[x] and v ∈ V by fv :=
∑r

i=0 aiT
iv. The polynomial f

annihilates v if fv = 0. The monic polynomial of least degree which annihilates v is
called the minimal polynomial of v. There exists a monic polynomial g ∈ Fq[x] of
least degree which annihilates all vectors in V . It is called the minimal polynomial
of T .
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Let g =
∏s

i=1 fci
i be the factorization of g into its irreducible divisors fi with

ci ∈ N≥1, 1 ≤ i ≤ s. Furthermore, let Vi := {v ∈ V | fci
i v = 0}, then Vi is a

T -invariant subspace of V and

V =
s⊕

i=1

Vi.

This is the primary decomposition of V into its primary components Vi, 1 ≤ i ≤
s. We call a vector space primary if its minimal polynomial is the power of an
irreducible polynomial.

Denote by Ti the restriction of T to Vi, then Ti is a linear operator on Vi.
According to [2] the lattice L(T ) is the direct product of the lattices L(Ti), i.e.

L(T ) =
s∏

i=1

L(Ti).

This means that for each U ∈ L(T ) there exists exactly one sequence (U1, . . . , Us) ∈∏s
i=1 L(Ti), so that U = U1⊕· · ·⊕Us. Therefore, knowing the polynomials σ(Ti) =∑dim Vi

k=0 σk(Ti)xk we can compute σ(T ) as the product
∏s

i=1 σ(Ti). Consequently,
it is enough to study the lattices L(Ti) of the primary components Vi, 1 ≤ i ≤ s.

2. Cyclic vector spaces

For v ∈ V let [v] := Fq[x]v = {fv | f ∈ Fq[x]}. Then [v] is a T -invariant subspace.
It is called the cyclic subspace generated by v. If d denotes the degree of the minimal
polynomial of v, then [v] = 〈v, Tv, . . . , T d−1v〉 and its dimension is equal to d. In
general, a vector space U is called cyclic if there exists some v ∈ U , so that U = [v].

If U is a T -invariant vector space and if v belongs to U , then [v] is a subspace of
U , thus, [v] is the smallest T -invariant subspace of V containing v.

3. Decomposition of a primary space into cyclic subspaces

Let V be primary, i.e. V is an n-dimensional vector space with minimal polyno-
mial fc where f is irreducible over Fq and c ∈ N≥1.

According to [2] the lattice L(T ) is either simple (which means that the only
lattice homomorphisms of L(T ) are isomorphisms or constant mappings) or it is a
chain. Moreover, L(T ) is a chain if and only if V is cyclic.

Let I(h) denote the ideal generated by h in Fq[x]. In the present situation V can
be seen as an Fq[x]/I(fc)-module. It is well known that there exists a decomposition
of V as a direct sum of cyclic subspaces, i.e.

V =
r⊕

i=1

Ui,

where Ui = [vi] ' Fq[x]/I(f ti) and c = t1 ≥ . . . ≥ tr ≥ 1.
For v ∈ V define the height of both v and [v] by

h([v]) := h(v) :=
dim[v]
deg f

.

Then fh(v) is the minimal polynomial of v. Each v ∈ V has a unique representation
v = u1 + · · ·+ ur with ui ∈ [vi], 1 ≤ i ≤ r, and h(v) = max {h(ui) | 1 ≤ i ≤ r}.

We collect properties of a cyclic vector space in

Lemma 1. Let T be a linear operator on V and let U = [v] ' Fq[x]/I(f t), where
f is irreducible, t ∈ N≥1, be a cyclic subspace of V .
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1. L(T |U ) is the chain

U = [v] ⊃ [fv] ⊃ . . . ⊃ [f t−1v] ⊃ {0}.

2. Consider some τ ∈ {0, . . . , t}, then f t−τ is the minimal polynomial of fτv
and of T restricted to [fτv].

3. dim U = t deg f.
4. Consider some τ ∈ {1, . . . , t}. The elements of height τ in U are the elements

which belong to [f t−τv] \ [f t−τ+1v]. If Q := qdeg f , then there are Qτ −Qτ−1

vectors of height τ in U . Each vector of height τ in U generates the cyclic
vector space [f t−τv].

5. Consider a polynomial g ∈ Fq[x] with gcd(g, f t) = fs, and an integer τ ∈ N
with s + τ ≤ t. Then {gv | v ∈ [fτv]} = [fs+τv].

The proof is left to the reader.
Consider the decomposition V =

⊕r
i=1[vi] from above. Then (cf. [10]) the

species of this decomposition is the vector λ = (λ1, . . . , λc) of nonnegative integers,
where λj is the number of summands [vi] of height j, i.e.

λj = |{i ∈ {1, . . . , r} | h(vi) = j}| .

Consequently, λc ≥ 1,
∑c

j=1 λj = r, and
∑c

j=1 jλj deg f = dim V = n.
In general the decomposition of a primary vector space V as a direct sum of cyclic

subspaces is not unique. However two different decompositions of V have the same
species. Therefore, λ = (λ1, . . . , λc) is the species of V and each decomposition of
V as a direct sum of cyclic subspaces has the species λ.

Lemma 2. Let V be a primary vector space of species λ = (λ1, . . . , λc), λc 6= 0,
and assume that there exists some t ∈ {1, . . . , c} so that λj = 0 for all j < t. Then
for each u ∈ V with h(u) = s ≤ t and for each g ∈ Fq[x] with gcd(g, f c) = f t−s

there exists some v ∈ V with h(v) = t and gv = u.

Proof. Each u ∈ V has the unique representation u = u1 + · · ·+ ur with ui ∈ [vi].
The height of u is equal to s if and only if h(ui) ≤ s for all i ∈ {1, . . . , r} and
there exists some i0 ∈ {1, . . . , r} so that h(ui0) = s. Hence, there exist polynomials
gi ∈ Fq[x] so that ui = givi, gcd(gi, f

c) = fai where ai ≥ ti − s ≥ t − s and
ai0 = ti0 − s. Consequently, gi = g̃if

t−sf bi where bi = ai − (t − s) ≥ 0 and
ui = g̃if

t−s(f bivi) ∈ g̃if
t−s[f bivi].

Consider a polynomial g of the form g̃f t−s where g̃ and f are relatively prime.
Then by Lemma 1.5 there exists ũi ∈ [f bivi] so that ui = gũi for 1 ≤ i ≤ r.
Thus u =

∑r
i=1 ui = g

∑r
i=1 ũi. Moreover h(ũi) = ti − bi = ti − ai + t − s ≤

ti − (ti − s) + t − s = t and h(ũi0) = t. If we set v =
∑r

i=1 ũi, then h(v) = t and
gv = u.

The next example shows how to generalize the formula for the enumeration of
all k-dimensional subspaces to the enumeration of the k-dimensional T -invariant
subspaces of V .

Example 1. Let V = Fn
q , T = idV , then the minimal polynomial of T is f = x−1,

thus c = 1. Each 1-dimensional subspace is a cyclic one, hence 〈v〉 = [v] for all
v ∈ V . The species of V is λ = (n). Let e(i) be the i-th unit vector in Fn

q ,
1 ≤ i ≤ n, then two decompositions of V as a direct sum of cyclic subspaces are
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e.g.

V =
n⊕

i=1

[e(i)] =
n⊕

i=1

[e(1) + · · ·+ e(i)].

Each k-dimensional subspace of V is T -invariant and has the species µ = (k). Thus
the number of k-dimensional T -invariant subspaces of V is

k−1∏
i=0

qn − qi

qk − qi
. (∗)

The nominator determines the number of all k-tuples (u1, . . . , uk) in V k so that the
ui, 1 ≤ i ≤ k, are linearly independent. Hence, it is the number of all k-tuples
(u1, . . . , uk) in V k so that h(ui) = 1, 1 ≤ i ≤ k, and that the sum of the cyclic
spaces [ui], 1 ≤ i ≤ k, is direct. Therefore, the sum

⊕k
i=1[ui] has the species µ.

Consider an arbitrary k-dimensional subspace U of V . Then its species is µ.
The denominator in (∗) is the number of all k-tuples (u1, . . . , uk) in Uk so that the
ui, 1 ≤ i ≤ k, are linearly independent. Hence, it is the number of all k-tuples
(u1, . . . , uk) in Uk so that h(ui) = 1, 1 ≤ i ≤ k, and that the sum of the cyclic
spaces [ui], 1 ≤ i ≤ k, is direct. Therefore, the sum

⊕k
i=1[ui] is equal to U and

has the species µ. This method was generalized in [13] to the computation of the
number of T -invariant subspaces of a primary space where the minimal polynomial
of T is just irreducible, i.e. in our terminology c = 1.

Consider a primary vector space V of species λ. Each T -invariant subspace U
of V has a decomposition as a direct sum of cyclic subspaces. Therefore, it has a
species µ. In the sequel we describe how to construct for given µ all subspaces of
V which have µ as their species, and which species µ occur as species of subspaces
of V .

Lemma 3. Let U be a T -invariant subspace of a primary space V . If there exists
some v ∈ V with h(v) = t so that U ∩ [v] = {0}, then h(v−u) ≥ t for all u ∈ U (or
equivalently, v 6= u + w for all u ∈ U and all w ∈ V with h(w) < t).

The proof is left to the reader.

Lemma 4. Let V be a primary vector space of species λ = (λ1, . . . , λc), λc 6= 0.
Consider some t ∈ {1, . . . , c}, and some v ∈ V with h(v) = t. Let U be a T -
invariant subspace of V of species ν = (ν1, . . . , νc) so that νi = 0 for i < t. Then
U ∩ [v] = {0} if and only if h(v − u) ≥ t for all u ∈ U (or equivalently, v 6= u + w
for all u ∈ U and all w ∈ V with h(w) < t).

Proof. The previous lemma proved that if U ∩ [v] = {0} then h(v − u) ≥ t for all
u ∈ U . Conversely, assume that U ∩ [v] 6= {0}, then there exists some g ∈ Fq[x]
so that 0 6= gv = u ∈ U . Let h(u) = s, then 1 ≤ s ≤ t and gcd(g, f t) = f t−s.
By Lemma 2 there exists some u′ ∈ U so that u = gv = gu′, thus g(v − u′) = 0.
Therefore, the height h(v − u′) ≤ t− s ≤ t− 1 is less than t which contradicts our
assumption.

Now we determine the number of vectors of height t in a primary vector space.

Lemma 5. Let V be a primary vector space with minimal polynomial fc and of
species λ = (λ1, . . . , λc). For t ∈ {1, . . . , c} the number of vectors of height t is equal
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to

αt(λ) =
Qt −Qt−1

Q− 1
Q(t−1)(lt−1)(Qlt − 1)

t−1∏
i=1

Qiλi

where lt := λt + · · ·+ λc and Q = qdeg f .

Proof. In the decomposition V =
⊕r

i=1[vi] the first l := λt + · · ·+λc summands are
spaces of height at least t, the remaining spaces are of height less than t. In order to
determine all vectors v ∈ V with h(v) = t we determine all r-tuples (u1, . . . , ur) with
ui ∈ [vi], 1 ≤ i ≤ r, so that h(ui) ≤ t, and there exists at least one i ∈ {1, . . . , l} so
that h(ui) = t. Then the height of v = u1 + · · · + ur = t. The set of these vectors
can be partitioned into l disjoint subsets indexed by j so that for 1 ≤ j ≤ l the
height h(ui) < t for i < j and h(uj) = t. For each j ∈ {1, . . . , l} the number of
these r-tuples is equal to Q(t−1)(j−1)(Qt −Qt−1)Qt(l−j)

∏t−1
i=1 Qiλi . Summing these

terms for j ∈ {1, . . . , l} gives the expression αt(λ).

Given a subspace U of V of species ν with νj = 0 for j < t, Lemma 4 explains how
to find a vector v ∈ V so that the species of U ⊕ [v] is equal to µ where µt = νt + 1
and µj = νj for j 6= t.

Lemma 6. Let V be a primary vector space with minimal polynomial fc and of
species λ = (λ1, . . . , λc). Consider some t ∈ {1, . . . , c}. Let U be a T -invariant
subspace of V of species ν = (ν1, . . . , νc) so that νi = 0 for i < t. Let Q := qdeg f .
Then there exist

βt(λ, ν) = αt(λ)− αt(ν)
t−1∏
i=1

QiλiQ(t−1)
∑c

i=t(λi−νi)

vectors v ∈ V so that h(v) = t and U ∩ [v] = {0}.

Proof. The number of vectors v ∈ V of the form v = u + w where u ∈ U , h(u) = t

and h(w) < t is equal to αt(ν)
∏t−1

i=1 QiλiQ(t−1)
∑c

i=t(λi−νi). The assertion follows
from Lemma 4.

Consider a primary vector space V of species λ and µ the species of a subspace
of V . Let s =

∑c
i=1 µi. Now we describe an algorithm for determining all sequences

(u1, . . . , us) ∈ V s, so that h(u1) ≥ . . . ≥ h(us), the sum [u1] + · · · + [us] is direct
and the species of [u1]⊕ · · · ⊕ [us] is µ.

Algorithm:
1): Let k1 := max

{
j ∈ {1, . . . , c} | µj 6= 0

}
.

2): Choose u1 ∈ V so that h(u1) = k1.
3): Let U1 := [u1] and let ν(1) be the species of U1. Let i := 1.
4): If ν(i) 6= µ determine ki+1 := max

{
j ∈ {1, . . . , c} | µj 6= ν

(i)
j

}
, else goto 7).

5): Choose ui+1 ∈ V so that h(ui+1) = ki+1 and Ui ∩ [ui+1] = {0}.
6): Let Ui+1 := Ui ⊕ [ui+1] and let ν(i+1) be the species of Ui+1. Let i := i + 1.

Goto 4).
7): Output (u1, . . . , us) where s =

∑c
i=1 µi.

The sequence (ν(1), . . . , ν(s)) of species is uniquely determined by µ. Also (k1, . . . , ks)
is uniquely determined by µ. If U is of species µ, then U =

⊕s
j=1 Uj where

Uj ' Fq[x]/I(fkj ) for 1 ≤ j ≤ s. By Lemma 5 the number of possible choices

Advances in Mathematics of Communications Volume 5, No. 2 (2011), 407–416



412 Harald Fripertinger

for u1 in 2) is equal to αk1(λ). By Lemma 6 the number of possible choices for ui+1

in 5) is βki+1(λ, ν(i)). Consequently there exist

γ(λ, µ) := αk1(λ)
s−1∏
i=1

βki+1(λ, ν(i))

sequences (u1, . . . , us) ∈ V s, so that h(u1) ≥ . . . ≥ h(us), the sum [u1] + · · · + [us]
is direct and the species of [u1] ⊕ · · · ⊕ [us] is µ. This number corresponds to the
nominator in (∗), whereas the denominator in (∗) corresponds to γ(µ, µ).

Theorem 1. Let V be a primary vector space of species λ = (λ1, . . . , λc) and let µ
be the species of a subspace of V .

1. The number of different subspaces of V of species µ is equal to

γ(λ, µ)
γ(µ, µ)

.

2. The number of different decompositions of V as a direct sum of cyclic sub-
spaces is equal to

γ(λ, λ)∏c
i=1 λi!(Qi −Qi−1)λi

.

where Q = qdeg f .

Proof. Let U be a subspace of V of species µ and let s :=
∑c

i=1 µi. Then γ(µ, µ)
is the number of sequences (u1, . . . , us) ∈ Us so that h(ui) ≥ h(ui+1), 1 ≤ i < s,
and U =

⊕s
i=1[ui]. This number does not depend on the particular choice of U , it

only depends on the species µ. Therefore, γ(λ, µ)/γ(µ, µ) is the number of different
subspaces of V of species µ.

For proving the second assertion let r :=
∑c

i=1 λi. Two r-tuples (u1, . . . , ur) and
(u′1, . . . , u

′
r) in V r determine the same decomposition of V into cyclic subspaces⊕r

j=1[uj ] or
⊕r

j=1[u
′
j ] if and only if there exists a permutation π ∈ Sr which

permutes the indices of summands of the same height, so that [u′j ] = [uπ(j)] for all
j ∈ {1, . . . , r}. It is obvious that there exist

∏c
i=1 λi! permutations which permute

the indices of summands of the same height. According to Lemma 1 each cyclic
subspace of height i has exactly Qi −Qi−1 generators. This finishes the proof.

An immediate consequence is

Theorem 2. Let V be a primary vector space of species λ. For 1 ≤ k ≤ n the
number of k-dimensional T -invariant subspaces of V is

σk(T ) =
∑

µ

γ(λ, µ)
γ(µ, µ)

where the sum is taken over all species µ which are species of k-dimensional sub-
spaces of T .

Finally, we have to analyze which species µ occur as species of subspaces of a
primary space of species λ.

Theorem 3. Let V be a primary vector space of species λ = (λ1, . . . , λc). The
sequence µ = (µ1, . . . , µc) is the species of a subspace of V if and only if

∑c
i=j µi ≤∑c

i=j λi for all j ∈ {1, . . . , c}.
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Proof. Assume that
∑c

i=j µi ≤
∑c

i=j λi for all j ∈ {1, . . . , c}. By definition
∑c

i=j λi

is the number of summands in the decomposition of V as
⊕r

i=1[vi] whose height is
at least j. As always we assume that h([vi]) = ti ≥ ti+1 = h([vi+1]) for 1 ≤ i < r.
We use the algorithm from above to determine a sequence (u1, . . . , us) in V s so that
the species of

⊕s
i=1[ui] is µ. If we have found such a sequence, then h([ui]) = ki,

1 ≤ i ≤ s, where the ki are constructed from µ. The assumption on λ and µ
guarantees that ki ≤ ti for all i ∈ {1, . . . , s}. Therefore, it is possible to choose
ui = f ti−kivi, 1 ≤ i ≤ s. Then it is obvious that

⊕s
i=1[ui] is a subspace of V of

species µ.
Let µ be the species of a subspace of V and let s :=

∑c
i=1 µi. Assume that

there exists some j ∈ {1, . . . , c} such that
∑c

i=j µi >
∑c

i=j λi and let j0 be the
greatest j with this property. Using the algorithm above we try to determine a
sequence (u1, . . . , us) in V s so that the species of

⊕s
i=1[ui] is µ. Let i0 :=

∑c
i=j0

λi

and assume that we have already chosen vectors u1, . . . , ui0 which form the space
U =

⊕i0
i=1[ui]. The species of U is ν(i0) and

∑c
i=j0

ν
(i0)
i =

∑c
i=j0

λi = i0. According
to the first part of this prove it is always possible to find these vectors. However, it
is impossible to determine a vector ui0+1 with h(ui0+1) = j0 and U ∩ [ui0+1] = {0},
since βj0(λ, ν(i0)) = αj0(λ) − αj0(ν

(i0))
∏j0−1

i=1 QiλiQ(j0−1)
∑c

i=j0
(λi−νi) = αj0(λ) −

αj0(ν
(i0))

∏j0−1
i=1 Qiλi = 0.

4. Monomial isometry classes of linear codes

For 1 ≤ k ≤ n a linear (n, k)-code C over Fq is a k-dimensional subspace of Fn
q .

Two linear (n, k)-codes are called monomially isometric if there exists a monomial
matrix M , i.e. a regular n × n-matrix which has in each row and in each column
exactly one nonzero component, so that C2 = C1M

−1 =
{
c ·M−1 | c ∈ C1

}
. (In

coding theory its is common practice to write vectors as row vectors.)
The monomial matrices form the group Mn(q), the full monomial group over

the multiplicative group F∗
q , which is isomorphic to the wreath product F∗

q o Sn,
where Sn is the symmetric group on {1, . . . , n}. Then the multiplication of a code
C with M−1 from the right describes an action of the group Mn(q) on the set
Unk(q) of all (n, k)-codes over Fq. The isometry class of the code C is then the
orbit {CM | M ∈ Mn(q)} of C. Therefore, using the Lemma of Cauchy-Frobenius,
the number of monomially nonisometric linear (n, k)-codes over Fq is the average
number of fixed points in Unk(q) for all monomial matrices. (For group actions see
[9, chapters 1 and 2.1] for monomial isometry see [1, section 1.4].)

Each monomial matrix M yields a linear operator TM on Fn
q defined by v 7→ v·M .

A linear code C is a fixed point of M ∈ Mn(q) if and only if C is TM -invariant. Thus
the number of monomially nonisometric linear (n, k)-codes over Fq is the average
number of TM -invariant k-dimensional subspaces of Fn

q for all M ∈ Mn(q).
Therefore, the method presented above allows the computation of the numbers

of monomially nonisometric linear (n, k)-codes.
The actual computation using the method of Cauchy-Frobenius is possible since

the conjugacy classes of full monomial groups are known (cf. [9, 1.3.3 and 2.2.7]).
As was mentioned above, Mn(q) is isomorphic to F∗

q o Sn. As a matter of fact, it is
more or less enough to know the cycle types of elements in Sn and the conjugacy
classes of F∗

q . The latter are of size one, since F∗
q is commutative.

The permutation π ∈ Sn has the cycle type (a1, . . . , an), if for 1 ≤ j ≤ n
there are exactly aj cycles of length j in the decomposition of π as a product
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of pairwise disjoint cyclic permutations. Thus the cycle type (a1, . . . , an) satisfies∑n
j=1 jaj = n.
The conjugacy classes of Mn(q) are precisely described by all (q−1)×n-matrices

with nonnegative integer entries ai,j , so that
∑n

j=1

∑q−1
i=1 jai,j = n. Such a ma-

trix determines a cycle type of a permutation by (
∑q−1

i=1 ai,1, . . . ,
∑q−1

i=1 ai,n) in Sn.
Moreover, ai,j indicates how many cycles of length j are associated with the i-th
element of F∗

q .
Assume that the elements of F∗

q are labelled as F∗
q = {β1, . . . , βq−1}. Consider a

monomial matrix M which belongs to the conjugacy class described by the matrix
(ai,j). If a cycle of length j is associated with the element βi, then xj −βi occurs as
a factor of the minimal polynomial of TM . Moreover, the characteristic polynomial
of TM can be determined from the matrix (ai,j) as

n∏
j=1

q−i∏
i=1

(xj − βi)
ai,j

.

Instead of determining the minimal polynomial of TM we immediately determine
the species of all primary components. First we factor each of the xj − βi where
ai,j 6= 0. Let p be the characteristics of Fq. If p and j are relatively prime, then
xj − βi is the product of pairwise distinct prime factors f . The factor (xj − βi)

ai,j

of the characteristic polynomial contributes ai,j summands of height 1 to the de-
compositions of the primary components determined by these f .

If j = puj′ and j′ and p are relatively prime, then xj − β = (xj′ − β)
pu

and,
consequently, each prime factor f occurs with the multiplicity pu. In this situation
the factor (xj − βi)

ai,j of the characteristic polynomial contributes ai,j summands
of height pu to the decompositions of the primary components determined by these
f .

This way we determine the species of the primary components of V corresponding
to the operator TM where M is a representative of the conjugacy class in Mn(q)
determined by the matrix A = (ai,j). Hence we know how to determine σk(TM ),
the number of k-dimensional TM -invariant subspaces of Fn

q . This number depends
only on the conjugacy class described by A and not on the particular choice of M ,
so we indicate it by σk(A). The size of this conjugacy class is (cf. [9, 2.2.7])

s(A) :=
n!(q − 1)n∏n

j=1

∏q−i
i=1 ai,j !(j(q − 1))ai,j

.

We summarize these results in

Theorem 4. The number of linearly nonisometric linear (n, k)-codes over Fq is

1
n!(q − 1)n

∑
A

s(A)σk(A)

where we are summing over all possible types A of conjugacy classes in Mn(q) and
where s(A) is the size of the conjugacy class given by A.

We were already determining numbers of isometry classes of linear codes using
quite a different approach. (See e.g. [9, pages 40–43], [6], [4], [1, section 6.1].)
Our method (cf. [3]) was implemented in SYMMETRICA [16]. In this approach
a linear code C was represented by its generator matrices, actually by the orbit
{A · Γ | A ∈ GLk(q)} of an arbitrary generator Γ matrix of C. For historical reasons
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— we were following ideas of D. Slepian [14], [15] — isometry classes of linear codes
were then considered as orbits of generator matrices, or more generally of k × n-
matrices over Fq, under the operation of the direct product GLk(q)×Mn(q). In the
case q 6= 2, using a result of Lehmann [11], [12], this action could be replaced by an
action of PGLk(q)×Sn on the set of all functions from {1, . . . , n} to the projective
geometry PGk−1(q). Using some ideas of J. P. S. Kung’s paper [10] it was possible
to determine cycle index polynomials of linear and projective matrix groups over
Fq (see [5] or [1, section 6.4]). Finally, the numbers of nonisometric linear codes
could be computed by certain substitutions into these cycle index polynomials.

The new method is implemented in GAP and SYMMETRICA. GAP (cf. [7]) was
used for factoring the polynomials xj − βi over Fq. The other computations were
done in SYMMETRICA. Our results allow to confirm the previously computed data
and to enlarge the sets of parameters (n, k, q) where we are able to determine the
numbers of nonisometric codes explicitly. These enlarged tables containing numbers
of nonisometric codes over different finite fields can be found on the author’s web
page http://www.uni-graz.at/~fripert/. Just from the description of the new
method it is clear that this approach is the natural way for enumerating monomially
nonisometric codes. Especially in situations where for given n we determine the
number of monomially nonisometric (n, k)-codes for all k the new method is much
faster than the previous one. On the other hand, the old method should be preferred
when for given k (not too big) we determine numbers of monomially nonisometric
(n, k)-codes for several n > k.

In several places it was important to consider vector spaces over fields and not
modules over rings. Therefore, it rather seems to be impossible to give a direct
generalization of this approach to the enumeration of codes over Z4.
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