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Summary. We describe the general solution (α, β), where α = (α(s, x))s∈C and β = (β(s, x))s∈C

are families of formal power series in C [[x]], of the two so-called cocycle equations

α(s + t, x) = α(s, x)α(t, π(s, x)), s, t ∈ C (Co1)

β(s + t, x) = β(s, x)α(t, π(s, x)) + β(t, π(s, x)), s, t ∈ C (Co2)

together with the boundary condition

α(0, x) = 1, β(0, x) = 0, (B1)

where π = (π(s, x))s∈C is an iteration group in C [[x]]. Our method is based on the knowledge of
the regular solutions of (Co1) and (Co2) and on a well-known and often used theorem concerning
the algebraic relations between exponential functions and additive functions.
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1. The problem

For the families α = (α(s, x))s∈C and β = (β(s, x))s∈C of formal power series

α(s, x) =
∑
n≥0

αn(s)xn, β(s, x) =
∑
n≥0

βn(s)xn ∈ C [[x]]

with unknown coefficient functions αn, βn : C → C, n ≥ 0, we study the system of
so called cocycle equations

α(s + t, x) = α(s, x)α(t, π(s, x)), s, t ∈ C (Co1)

β(s + t, x) = β(s, x)α(t, π(s, x)) + β(t, π(s, x)), s, t ∈ C (Co2)
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together with the boundary condition

α(0, x) = 1, β(0, x) = 0, (B1)

where π = (π(s, x))s∈C is an iteration group, i.e. π is a solution of the translation
equation

π(s + t, x) = π(t, π(s, x)), s, t ∈ C (T)

of the form
π(s, x) =

∑
n≥1

πn(s)xn, s ∈ C

with πn : C → C, n ≥ 1, and π1(s) �= 0 for all s ∈ C.
This problem has already been solved for analytic iteration groups and solutions

α, β with entire coefficient functions when discussing covariant embeddings of a
linear functional equation with respect to analytic iteration groups. (Cf. [4, 3].)
These analytic solutions were computed by using differentiation (coefficientwise
differentiation and integration, mixed chain rules, etc.).

For a foundation of the basic calculations with formal power series we refer the
reader to [9] and to [2]. If ψ(x) ∈ C [[x]] is of the form ψ(x) =

∑
n≥k ψnxn with

ψk �= 0, then k is the order of ψ, which will be indicated as ordψ(x) = k.
Furthermore, the notion of congruence modulo xr will be useful. We write

ϕ ≡ ψ mod xr for formal power series ϕ(x), ψ(x) ∈ C [[x]] if xr is a divisor of the
difference ϕ(x) − ψ(x). In other words ϕ(x) − ψ(x) = 0, or its order is greater
than or equal to r. The exponential series is given as

exp(x) =
∑
n≥0

xn

n!
,

and the formal logarithm is the series defined by

ln(1 + x) =
∑
n≥1

(−1)n−1xn

n
.

Multiplicative powers of a formal series are usually indicated as [ψ(x)]n and not
as ψ(x)n.

In the meantime W. Jab�loński and L. Reich [10, 11] succeeded in the classifica-
tion of all iteration groups π (without any regularity conditions). In the same way
as with analytic iteration groups they distinguished two types of iteration groups:

Iteration groups of type I are of the form

π(s, x) = π1(s)x +
∑
�≥2

P�(π1(s))x�, s ∈ C,

where π1 : C → C
∗ := C \ {0} is a generalized exponential function, π1 �= 1, and

where P�(y) ∈ C[y] is a polynomial of formal degree equal to �. At the moment we
do not need the detailed structure, the general form, and the universal character
(depending on certain parameters) of these polynomials P�. Iteration groups of
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type I have very simple normal forms, since for each π of type I there exists some
S(x) = x + s2x

2 + · · · ∈ C [[x]] such that

π(s, x) = S−1(π1(s)S(x)), s ∈ C.

As it was shown in [4] it is enough to solve (Co1) and (Co2) for these normal
forms π(s, x) = π1(s)x. The analytic iteration groups of type I are obtained for
π1(s) = eµs with µ �= 0, a regular exponential function.

Iteration groups of type II can be described as

π(s, x) = x + πk(s)xk +
∑
�>k

P�(πk(s))x�, s ∈ C,

where k ≥ 2, πk : C → C is an additive function, πk �= 0, and where P�(y) ∈ C[y]
is a polynomial of formal degree equal to � �−1

k−1�. Here, too, we do not need the
detailed structure, the general form, and the universal character of these polyno-
mials P�. But the reader should be aware of the fact that even though we use the
same letters these polynomials are different from the polynomials occurring in the
description of iteration groups of type I. The analytic iteration groups of type II
are obtained for πk(s) = cks with ck �= 0. In comparison with iteration groups of
type I, these groups do not have so simple normal forms, and for that reason we
do not use normal forms in our approach.

Our method in the present paper is based on the knowledge of the regular
solutions of (Co1) and (Co2) as presented in [4], on a well-known and often used
theorem [13] concerning the algebraic relations between exponential functions and
additive functions, and on results about iteration groups in power series rings
without regularity conditions [10, 11].

Finally, let us mention some facts concerning our notation. Throughout this
paper the coefficients of a formal series or the coefficient functions of a family
of series will be indicated with the same, but indexed, letter as the series or the
family. Iteration groups are indicated with π, a particular analytic iteration group
of type II with π∗. The polynomials P� describe the coefficient functions of an
iteration group as polynomials in π1 or πk. The integer k ≥ 2 is the index of the
second nonzero coefficient function of an iteration group of type II. In the different
theorems the polynomials Qn usually depend on πk and certain other coefficient
functions. They are auxiliary polynomials, and in each situation they are a little
bit differently defined. The families α and β denote solutions of (Co1) and (Co2).
The families γ and ∆ are closely related to α and β. For describing α we use
series E(x) ≡ 1 mod x, and families P (s, x). The families β are described with
an additional series F (x) ∈ C [[x]], and a family Q(s, x). Here we tried to use the
same notation as in the fundamental paper [4]. The reader should not mix these
families P (s, x) and Q(s, x) with the earlier mentioned polynomials P and Q.

Knowing the solutions of the system of cocycle equations is an important step
when discussing covariant embeddings of a linear functional equation. Such em-
beddings were studied in a very general setting by Z. Moszner in [12] and for
functions defined on a real interval by G. Guzik in [5] and [7]. The first cocycle
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equation is also studied in [6] and [8]. It also appears as the triangular equation
for instance in [1].

2. The general solution of (Co1)

As in the analytic case we can prove that for any solution α of (Co1) and (B1) the
coefficient function α0 satisfies α0(s) �= 0 for all s ∈ C. If we define α̂(s, x) by

α(s, x) = α0(s)
(
1 +

∑
n≥1

αn(s)
α0(s)

xn

︸ ︷︷ ︸
=:α̂(s,x)

)
, s ∈ C,

then we obtain that α is a solution of (Co1) and (B1) if and only if α0 is a
generalized exponential function and α̂ is a solution of (Co1) and (B1). It can
easily be verified that if α̂(s, x) = 1 + . . . is a solution of (Co1), then (B1) is also
satisfied.

Finally introducing γ by

γ(s, x) := ln(α̂(s, x)) =
∑
n≥1

γn(s)xn, s ∈ C,

we obtain the following characterization:

Lemma 1. The family α̂ is a solution of (Co1) if and only if γ is a solution of

γ(s + t, x) = γ(s, x) + γ(t, π(s, x)), s, t ∈ C. (Co1′)

Now it will be useful to distinguish between iteration groups of type I and
type II.

2.1 The general solution of (Co1) for iteration groups of type I

In this section we always assume that the iteration group π is given in normal
form, i.e. π(s, x) = π1(s)x, where π1 �= 1 is a generalized exponential function.

First we determine necessary conditions on α for being a solution of (Co1).
Thus we assume that α̂ is a solution of (Co1), and that γ = ln(α̂) satisfies (Co1′).

Lemma 2. The family γ is a solution of (Co1′) if and only if there exists D(x) ∈
C [[x]] of order ≥ 1 such that

γ(s, x) = D(π1(s)x) − D(x), s ∈ C.

Proof. Comparing coefficients in (Co1′), and using the fact that γn(s+t) = γn(t+s)
we obtain that

γn(s) + γn(t)π1(s)n = γn(t) + γn(s)π1(t)n, s, t ∈ C, n ≥ 1.
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Since π1 �= 1 is a generalized exponential function, there exists a series (tn)n≥1 of
complex numbers such that π1(tn)n �= 1 for all n ≥ 1. Thus

γn(s) =
γn(tn)

π1(tn)n − 1
(π1(s)n − 1) , s ∈ C, n ≥ 1,

which means
γn(s) = Dn(π1(s)n − 1), s ∈ C, n ≥ 1,

with Dn = γn(tn)/(π1(tn)n − 1) ∈ C. Consequently, γ(s, x) = D(π1(s)x) − D(x)
with D(x) =

∑
n≥1 Dnxn. Conversely, each γ of this form is a solution if (Co1′).

�

As an immediate consequence we derive that the general solution of (Co1) for
iteration groups of type I can be described exactly in the same way as for analytic
iteration groups of type I.

Corollary 3. Assume that π is an iteration group of type I given in its normal
form. The family α is a solution of (Co1) and (B1), if and only if there exists
some E(x) ∈ C [[x]], E(x) ≡ 1 mod x, such that

α(s, x) = α0(s)
E(π(s, x))

E(x)
, s ∈ C,

where α0 is a generalized exponential function.

Proof. Assuming that α is a solution of (Co1) and (B1), and writing it in the
form α0α̂, we already know that α0 is a generalized exponential function, and
γ(s, x) = ln(α̂(s, x)) = D(π1(s)x) − D(x) for some D(x) ∈ C [[x]] of order ≥ 1.
Thus, D(x) can be substituted into any formal series and we obtain

α̂(s, x) = exp(γ(s, x)) = exp(D(π1(s)x) − D(x)) =
E(π(s, x))

E(x)
, s ∈ C,

where E(x) = exp(D(x)) ≡ 1 mod x.
Conversely, direct computations prove that each α of this form is a solution of

(Co1) and (B1). �

Remark 4. Even if the iteration group π is not given in its normal form, each
solution of (Co1) is necessarily of the above mentioned form.

Proof. Assume that π(s, x) = S−1(π̃(s, S(x))), s ∈ C with S(x) = x + s2x
2 + . . .,

and π̃(s, x) = π1(s)x. The same way as in Theorem 1.3 of [4] it is possible to
prove that the general solution of (Co1) (i.e. the set of all solutions of (Co1)) is in
one-to-one correspondence to the general solution α̃ of

α̃(s + t, x) = α̃(s, x)α̃(t, π̃(s, x)), s, t ∈ C (C̃o1)
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via
α(s, S−1(y)) = α̃(s, y), s ∈ C.

Hence, since

α̃(s, y) = α0(s)
Ẽ(π̃(s, y))

Ẽ(y)
, s ∈ C,

we obtain by an easy computation

α(s, x) = α0(s)
E(π(s, x))

E(x)
, s ∈ C

with E(x) = (Ẽ ◦ S)(x). �

2.2 The general solution of (Co1) for iteration groups of type II

In this section we write the iteration group in the form

π(s, x) = x + πk(s)xk +
∑
�>k

P�(πk(s))x�, s ∈ C,

where k ≥ 2 and πk �= 0 is an additive function. Moreover, we also consider the
corresponding analytic iteration group π∗, which is given by

π∗(s, x) = x + π∗
k(s)xk +

∑
�>k

P�(π∗
k(s))x�, s ∈ C,

with the same polynomials P� as in π, and where π∗
k(s) = s for s ∈ C.

The close connection between π and π∗ is described by

π(s, x) = π∗(πk(s), x), s ∈ C.

For the proof of the next theorem and in order to prove that π∗, as introduced
above, is always an iteration group, we need the following preparatory

Lemma 5. Assume that a �= 0 is an additive function from C to C, and R(y, z)
is a polynomial in C[y, z]. Then R(a(s), a(t)) = 0 for all s, t ∈ C, if and only if
R = 0.

Proof. We only prove the nontrivial part of the assertion. Assume that R(a(s), a(t))
= 0 is satisfied for all s, t ∈ C. We collect the summands of R with respect to
powers of z, obtaining

R(y, z) =
d∑

i=0

ri(z)yi with ri ∈ C[z]

with some suitable d. First we fix an arbitrary element t0 ∈ C, and we get

0 = R(a(s), a(t0)) =
d∑

i=0

ri(a(t0))a(s)i.
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Since a is a non-trivial additive function, a(s) takes infinitely many values for
s ∈ C, whence ri(a(t0)) = 0 for 0 ≤ i ≤ d. The element t0 was arbitrarily chosen
in C, thus each t ∈ C must satisfy ri(a(t)) = 0 for all i, which yields that ri = 0
for 0 ≤ i ≤ d. Hence R = 0. �

Some technical details about multiplicative powers of π(s, x) are collected in

Lemma 6. Assume that

π(s, x) = x + πk(s)xk +
∑
�>k

P�(πk(s))x�, s ∈ C

is an iteration group of type II.

1. For n ≥ 1 the multiplicative n-th power of π(s, x) is given by

[π(s, x)]n = xn + nπk(s)xn−1+k +
∑

�>n−1+k

P̃
(n)
� (πk(s))x�

where P̃
(n)
� (πk(s)) are polynomials in πk(s).

2. If ϕ(t, s) =
∑

n≥0 ϕn(t)xn, then

ϕ(t, π(s, x)) =
k−1∑
n=0

ϕn(t)xn +
(
ϕk(t) + πk(s)ϕ1(t)

)
xk

+
∑
n>k

(
ϕn(t) + πk(s)(n + 1 − k)ϕn+1−k(t)

+Qn(πk(s), ϕ1(t), . . . , ϕn−k(t))
)
xn

with polynomials Qn(πk(s), ϕ1(t), . . . , ϕn−k(t)) which are linear in ϕj(t).

Proof. 1. For n = 1 the assertion is trivial. Assume that n ≥ 2, and define the
polynomial Pk by Pk(y) = y, then

π(s, x) = x +
∑
�≥k

P�(πk(s))x�,

and

[π(s, x)]n =
n∑

j=0

(
n

j

)
xj

⎛
⎝∑

�≥k

P�(πk(s))x�

⎞
⎠n−j

=
n−2∑
j=0

(
n

j

)
xj

⎛
⎝∑

�≥k

P�(πk(s))x�

⎞
⎠n−j

+ nxn−1
∑
�≥k

P�(πk(s))x� + xn.
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Obviously the order of

(
n

j

)
xj

⎛
⎝∑

�≥k

P�(πk(s))x�

⎞
⎠n−j

is ≥ j + k(n − j) = kn − (k − 1)j for 0 ≤ j ≤ n − 2. Consequently

ord

⎛
⎜⎝n−2∑

j=0

(
n

j

)
xj

⎛
⎝∑

�≥k

P�(πk(s))x�

⎞
⎠n−j

⎞
⎟⎠ ≥ kn − (k − 1)(n − 2)

= n + 2(k − 1) > n + k − 1.

Since all the occurring coefficient functions are polynomials in πk(s) we deduce
that

[π(s, x)]n = xn + nπk(s)xn−1+k +
∑

�>n−1+k

P̃
(n)
� (πk(s))x�

with suitable polynomials P̃
(n)
� (y) ∈ C[y].

2. Using the just derived representations of [π(s, x)]n we obtain

ϕ(t, π(s, x)) =
∑
n≥0

ϕn(t)[π(s, x)]n

= ϕ0(t) +
∑
n≥1

ϕn(t)
(
xn + nπk(s)xn−1+k +

∑
�>n−1+k

P̃
(n)
� (πk(s))x�

)
.

Collecting terms of order n yields the assertion. �

Remark 7. Assume that π is an iteration group of type II with

π(s, x) = x + πk(s)xk +
∑
�>k

P�(πk(s))x�, s ∈ C,

then π∗ as defined above is also an iteration group of type II.

Proof. Since π is a solution of the translation equation (T) we have

x + πk(s + t)xk +
∑
�>k

P�(πk(s + t))x�

= π(s, x) + πk(t)[π(s, x)]k +
∑
�>k

P�(πk(t))[π(s, x)]�

for all s, t ∈ C. Expanding the right-hand side we finally derive

x + (πk(s) + πk(t))xk +
∑
�>k

P�(πk(s) + πk(t))x�

= x + (πk(s) + πk(t))xk +
∑
�>k

R�(πk(s), πk(t))x�
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with R�(y, z) ∈ C[y, z] a polynomial, for � > k. Comparison of coefficients yields

P�(πk(s) + πk(t)) = R�(πk(s), πk(t)), s, t ∈ C, � > k.

Since πk is a nontrivial additive function, according to Lemma 5 we are allowed
to replace πk(s) and πk(t) by indeterminates S and T obtaining

P�(S + T ) = R�(S, T ), � > k.

Finally substituting s for S and t for T we get

P�(s + t) = R�(s, t), � > k.

This means that

x + (π∗
k(s) + π∗

k(t))xk +
∑
�>k

P�(π∗
k(s) + π∗

k(t))x�

= x + (π∗
k(s) + π∗

k(t))xk +
∑
�>k

R�(π∗
k(s), π∗

k(t))x�

for s, t ∈ C, thus π∗ is a solution of (T). Then it is clear that π∗ is of type II. �

Theorem 8. The family α is a solution of (Co1) and (B1) where π is an iteration
group of type II, if and only if there exists some E(x) ∈ C [[x]], E(x) ≡ 1 mod x,
such that

α(s, x) = α0(s)P (s, x)
E(π(s, x))

E(x)
, s ∈ C,

where α0 is a generalized exponential function, and where

P (s, x) =
k−1∏
n=1

exp
(

κn

∫ τ

0

[π∗(σ, x)]ndσ
∣∣∣
τ=πk(s)

)
,

with κ1, . . . , κk−1 ∈ C. The coefficients of P (s, x) and the coefficients of α(s, x)
are polynomials in πk(s).

Proof. First we assume that α = α0α̂ is a solution of (Co1) and (B1), whence,
γ = ln(α̂) is a solution of (Co1′). According to Lemma 6 the coefficient of xn in
the expansion of

γ(t, π(s, x)) =
∑
n≥1

γn(t)

[
x + πk(s)xk +

∑
�>k

P�(πk(s))x�

]n

equals⎧⎪⎨
⎪⎩

γn(t) if n < k,

γk(t) + πk(s)γ1(t) if n = k,
γn(t) + πk(s)(n + 1 − k)γn+1−k(t) + Qn(πk(s), γ1(t), . . . , γn−k(t)) if n > k,
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with certain polynomials Qn. Comparing coefficients in (Co1′) we derive

γn(s + t) = γn(s) + γn(t), n < k

γk(s + t) = γk(s) + γk(t) + πk(s)γ1(t),

γn(s + t) = γn(s) + γn(t) + πk(s)(n + 1 − k)γn+1−k(t)

+Qn(πk(s), γ1(t), . . . , γn−k(t)), n > k.

Using γk(s + t) = γk(t + s), we obtain from the above functional equation for γk

that
πk(s)γ1(t) = πk(t)γ1(s), s, t ∈ C.

Choosing t0 ∈ C such that πk(t0) �= 0 we furthermore get

γ1(s) =
γ1(t0)
πk(t0)

πk(s), s ∈ C.

Using in a similar way γn(s + t) = γn(t + s) for n > k we find that

γn(s) =
1

nπk(t0)

(
nπk(s)γn(t0) + Qn−1+k(πk(s), γ1(t0), . . . , γn−1(t0))

−Qn−1+k(πk(t0), γ1(s), . . . , γn−1(s))
)
, s ∈ C, n ≥ 2.

Thus, by induction on n, we get that each γn(s) can be expressed as a polynomial
Ψn(πk(s)) in πk(s). Finally putting α̂ = exp(γ), we get

α̂(s, x) = 1 +
∑
n≥1

Φn(πk(s))xn, s ∈ C

with polynomials Φn(y) ∈ C[y].
From this representation of α̂ we derive, that if πk is an entire function, then

α̂ is an analytic solution of (Co1). Using this form of α̂, comparison of coefficients
in (Co1) yields

1 +
∑
n≥1

Φn(πk(s + t))xn

=

⎛
⎝1 +

∑
n≥1

Φn(πk(s))xn

⎞
⎠
⎛
⎝1 +

∑
n≥1

Φn(πk(t))[π(s, x)]n

⎞
⎠ ,

whence
Φn(πk(s) + πk(t)) = Rn(πk(s), πk(t)), s, t ∈ C, n ≥ 1

for certain polynomials Rn(y, z) ∈ C[y, z]. For each n ≥ 1 this is a polynomial
relation in πk(s) and πk(t). Since πk is a non-trivial additive function, and these
relations hold for all s, t ∈ C, according to Lemma 5 we are allowed to replace
πk(s) and πk(t) in these polynomial relations, by indeterminates S and T , which
yields

Φn(S + T ) = Rn(S, T ), n ≥ 1.
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Now we replace S by π∗
k(s) and T by π∗

k(t), obtaining

Φn(π∗
k(s) + π∗

k(t)) = Rn(π∗
k(s), π∗

k(t)), s, t ∈ C, n ≥ 1.

This means that α∗(s, x) = 1 +
∑

n≥1 Φn(π∗
k(s))xn is an analytic solution of the

equation
α∗(s + t, x) = α∗(s, x)α∗(t, π∗(s, x)), s, t ∈ C (Co1∗)

for the analytic iteration group π∗. According to Theorem 2.6 of [4] there exist
E(x) = 1 + · · · ∈ C [[x]] and κ1, . . . , κk−1 ∈ C, such that

α∗(s, x) = P ∗(s, x)
E(π∗(s, x))

E(x)
, s ∈ C

with

P ∗(s, x) =
k−1∏
n=1

exp
(

κn

∫ s

0

[π∗(σ, x)]ndσ

)
.

If we now use the fact that the coefficient functions of each π∗(s, x) are polynomials
in π∗

k(s) = s, and if we carry out the coefficientwise integration, substitution into
exp and the multiplications, we derive that the coefficient functions of P ∗(s, x) are
polynomials in π∗

k(s) = s.
Finally, replacing π∗

k(s) by the indeterminate S and then substituting πk(s) for
S we obtain

α̂(s, x) = 1 +
∑
n≥1

Φn(πk(s))xn = α∗(πk(s), x)

= P ∗(πk(s), x)
E(π∗(πk(s), x))

E(x)
= P (s, x)

E(π(s, x))
E(x)

, s ∈ C

with P (s, x) = P ∗(πk(s), x). Consequently, α is of the given form. Conversely,
each α of this form is a solution of (Co1). �

Remark 9. From [4] we furthermore obtain that in the representation of α given
in Corollary 3 or Theorem 8 the series E and the family P (s, x) are uniquely
determined by α.

If furthermore π is an iteration group of type II, using results of [4] we obtain
that

exp
(

κn

∫ τ

0

π∗(σ, x)ndσ
∣∣∣
τ=πk(s)

)
= 1 + κnπk(s)xn + . . . , n ≥ 1,

and that the coefficient functions of both P (s, x) and [P (s, x)]−1 are polynomials
in πk(s). There it was also shown that

E(π(s, x))
E(x)

≡ 1 mod xk.
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3. The general solution of (Co2)

We assume that α is a solution of (Co1) and (B1) represented as in Corollary 3
or Theorem 8. Then the multiplicative inverse of α exists. Instead of β it is more
convenient to investigate

∆(s, x) =
β(s, x)

α(s, x)E(x)
, s ∈ C.

Again we distinguish between iteration groups of type I and type II.

3.1 The general solution of (Co2) for iteration groups of type I

Assume that π(s, x) = π1(s)x for s ∈ C, where π1 �= 1 is a generalized exponential
function.

Lemma 10. Assume that α is a solution of (Co1) and (B1) represented as in
Corollary 3. If π is an iteration group of type I, then (α, β) is a solution of (Co2)
if and only if (α,∆) is a solution of

∆(s + t, x) = ∆(s, x) + α0(s)−1∆(t, π(s, x)), s, t ∈ C. (Co2′)

The proof follows by simple calculations from Corollary 3 and (Co2).

Theorem 11. Assume that α is a solution of (Co1) and (B1) represented as in
Corollary 3, and that π is an iteration group of type I given in its normal form.

• If α0 �= πn
1 for all n ≥ 0, then the pair (α, β) is a solution of (Co2) if and

only if

β(s, x) = α0(s)E(π(s, x))
[
F (x) − α0(s)−1F (π(s, x))

]
, s ∈ C,

where F (x) ∈ C [[x]].
• If α0 = πn0

1 for some n0 ≥ 0, then the pair (α, β) is a solution of (Co2) if
and only if

β(s, x) = α0(s)E(π(s, x))
[
A(s)xn0 + F (x) − α0(s)−1F (π(s, x))

]
, s ∈ C

where A is an arbitrary additive function and F (x) ∈ C [[x]].

Proof. Assume that (α, β) is a solution of (Co2), then (α,∆) is a solution of (Co2′).
Writing ∆(s, x) =

∑
n≥0 ∆n(s)xn, comparing coefficients in (Co2′), and using the

fact that ∆n(s + t) = ∆n(t + s) we obtain

∆n(s) + α0(s)−1π1(s)n∆n(t) = ∆n(t) + α0(t)−1π1(t)n∆n(s), s, t ∈ C, n ≥ 0.
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Case 1. If α0 �= πn
1 for all n ≥ 0, then for each n ≥ 0 there exists tn ∈ C such

that α0(tn)−1π1(tn)n �= 1 and

∆n(s) =
∆n(tn)

1 − α0(tn)−1π1(tn)n

(
1 − α0(s)−1π1(s)n

)
= Fn

(
1 − α0(s)−1π1(s)n

)
, s ∈ C, n ≥ 0,

with Fn = ∆n(tn)/(1 − α0(tn)−1π1(tn)n) ∈ C. Hence

∆(s, x) = F (x) − α0(s)−1F (π1(s)x), s ∈ C,

with F (x) =
∑

n≥0 Fnxn, and

β(s, x) = α0(s)E(π(s, x))
[
F (x) − α0(s)−1F (π(s, x))

]
, s ∈ C.

Conversely, for each β of this form the pair (α, β) is a solution of (Co2).
Case 2. If α0 = πn0

1 for some n0 ≥ 0, then n0 is uniquely determined, for
otherwise we would have a relation π1(s)m = 1 with m �= 0 for all s ∈ C. This
contradicts the fact, that π1 takes infinitely many values. In the same way as in
the first case, we get

∆n(s) = Fn(1 − α0(s)−1π1(s)n), s ∈ C, n �= n0

with Fn ∈ C. Moreover, the coefficient function ∆n0 is additive. Hence

∆(s, x) = ∆n0(s)x
n0 + F (x) − α0(s)−1F (π1(s)x), s ∈ C,

with F (x) =
∑

n≥0 Fnxn (where the coefficient Fn0 is not determined by ∆), and

β(s, x) = α0(s)E(π(s, x))
[
∆n0(s)x

n0 + F (x) − α0(s)−1F (π(s, x))
]
, s ∈ C.

Conversely, for each β of the form

β(s, x) = α0(s)E(π(s, x))
[
A(s)xn0 + F (x) − α0(s)−1F (π(s, x))

]
, s ∈ C

where A is an additive function and F (x) ∈ C [[x]], the pair (α, β) is a solution of
(Co2). �

Remark 12. Assume that π(s, x) = S−1(π̃(s, S(x))), s ∈ C, with S(x) = x +
s2x

2 + . . ., and π̃(s, x) = π1(s)x.
If α0 �= πn

1 for all n ≥ 0, then the general solution of (Co2) is of the same form
as given above.

If α0 = πn0
1 , for some n0 ≥ 0, then (α, β) is a solution of (Co2) if and only if

β(s, x) = α0(s)E(π(s, x))
[
A(s)[S(x)]n0 + F (x) − α0(s)−1F (π(s, x))

]
, s ∈ C.

Proof. We only prove the last assertion. Assume that (α̃, β̃) is a solution of (Co1),
(B1), and (Co2) for the iteration group π̃(s, x) = π1(s)x in normal form with



Vol. 68 (2004) General solution of the cocycle equations without regularity conditions 213

α0 = πn0
1 , for some n0 ≥ 0. Then

α̃(s, x) = α0(s)
Ẽ(π̃(s, x))

Ẽ(x)
, s ∈ C

and

β̃(s, x) = α0(s)Ẽ(π̃(s, x))
[
A(s)xn0 + F̃ (x) − α0(s)−1F̃ (π̃(s, x))

]
, s ∈ C

for certain Ẽ(x), F̃ (x) ∈ C [[x]], α0 a generalized exponential function, and A an
additive function. Putting y = S(x), we obtain S(π(s, x)) = π̃(s, y) and similar as
in Theorem 1.3 of [4]

β(s, x) = β(s, S−1(y)) = β̃(s, y)

= α0(s)Ẽ(π̃(s, y))
[
A(s)yn0 + F̃ (y) − α0(s)−1F̃ (π̃(s, y))

]
= α0(s)Ẽ(S(π(s, x)))

[
A(s)[S(x)]n0 + F̃ (S(x)) − α0(s)−1F̃ (S(π(s, x)))

]
= α0(s)E(π(s, x))

[
A(s)[S(x)]n0 + F (x) − α0(s)−1F (π(s, x))

]
, s ∈ C

for E(x) = (Ẽ ◦ S)(x) and F (x) = (F̃ ◦ S)(x). �

3.2 The general solution of (Co2) for iteration groups of type II

Lemma 13. Assume that α is a solution of (Co1) and (B1) represented as in
Theorem 8. If π is an iteration group of type II, then (α, β) is a solution of (Co2)
if and only if (α,∆) is a solution of

∆(s + t, x) = ∆(s, x) +
α0(s)−1

P (s, x)
∆(t, π(s, x)), s, t ∈ C. (Co2′′)

We still need two preparatory lemmata, describing relations between non-trivial
generalized exponential and non-trivial additive functions.

Lemma 14. Assume that a �= 0 is an additive function from C to C, that e �= 1
is a generalized exponential function from C to C

∗, and that P (y), Q(y) ∈ C[y] are
polynomials. Then

P (a(s)) + Q(a(s))e(s) = 0, s ∈ C (∗)
if and only if P = Q = 0.

This follows directly from Theorem 6 of [13], since 1 and e are distinct expo-
nential functions (in [13] they are called multiplicative functions), and since a is
a non-zero additive function. For the convenience of the reader we give a proof
adapted to the situation of the lemma.
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Proof. We only prove the nontrivial part of the assertion. Assume that (∗) is
satisfied. If both P (x) = p and Q(x) = q are constant, then p + qe(s) = 0 for all
s ∈ C. If q = 0, then necessarily p = 0 and we are done. If q �= 0, then e(s) = −p/q
which is not a non-trivial generalized exponential function. Thus, this situation
cannot occur.

Now we will continue the proof by induction over n = deg(P ) + deg(Q). The
case n = 0 was just proved. We assume that n > 0, and if there are polynomials
P̃ , Q̃ with the property (∗) and deg(P̃ ) + deg(Q̃) < n, then P̃ = Q̃ = 0.

Since e �= 1, there exists some t0 ∈ C such that λ := e(t0) �= 1. Moreover, we
denote a(t0) by µ. From (∗) we obtain

P (a(s + t0)) + Q(a(s + t0))e(s + t0) = 0, s ∈ C

and consequently

P (a(s) + µ) + Q(a(s) + µ)e(s)λ = 0, s ∈ C. (∗∗)
Multiplying (∗) by λ and subtracting this from (∗∗) we get

P (a(s) + µ) − λP (a(s)) + λ
(
Q(a(s) + µ) − Q(a(s))

)
e(s) = 0, s ∈ C

which can be written as

P̃ (a(s)) + Q̃(a(s))e(s) = 0, s ∈ C

with P̃ (y) = P (y + µ) − λP (y) and Q̃(y) = λ (Q(y + µ) − Q(y)).
Now we claim that deg(P̃ ) + deg(Q̃) < n, whence P̃ = Q̃ = 0. If Q(y) =∑m

i=0 qiy
i with qm �= 0, then

Q̃(y)/λ = Q(y + µ) − Q(y) =
m−1∑
i=0

qi

(
(y + µ)i − yi

)
+ qm

m−1∑
j=0

(
m

j

)
µm−jyj

which is of degree strictly less than m = deg(Q). Similar computations show that
deg(P̃ )≤deg(P ), whence we conclude by the induction assumption that P̃ =Q̃=0.

Finally we have to show that P = Q = 0. Assuming that P �= 0, it is of the
form P (y) =

∑m
i=0 piy

i with m ≥ 0 and pm �= 0. But then the coefficient of ym in
P̃ is (1 − λ)pm �= 0 which is a contradiction. Thus P = 0 and then according to
(∗) also Q = 0. �

Lemma 15. Assume that a �= 0 is an additive function from C to C, that e �= 1
is a generalized exponential function from C to C

∗, and that Φ(x1, x2, x3, x4) is a
polynomial in C[x1, x2, x3, x4] which is of degree at most 1 in x1 and x2. Then
Φ(e(s), e(t), a(s), a(t)) = 0 for all s, t ∈ C, if and only if Φ = 0.

Proof. We only prove the nontrivial part of the assertion. Assuming that

Φ(e(s), e(t), a(s), a(t)) = 0
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for all s, t ∈ C and collecting with respect to powers of e(s) and a(s), we derive
n∑

j=0

(
pj(e(t), a(t)) + qj(e(t), a(t))e(s)

)
a(s)j = 0, s, t ∈ C,

for some n ∈ N with polynomials pj(y, z), qj(y, z) ∈ C[y, z]. For fixed t = t0 ∈ C

n∑
j=0

(p̃j + q̃je(s)) a(s)j = 0, s ∈ C

is satisfied with p̃j = pj(e(t0), a(t0)) and q̃j = qj(e(t0), a(t0)). In other words

P (a(s)) + Q(a(s))e(s) = 0, s ∈ C

for P (y) =
∑n

j=0 p̃jy
j and Q(y) =

∑n
j=0 q̃jy

j . From the last lemma we deduce
that P = Q = 0, whence p̃j = q̃j = 0 for 0 ≤ j ≤ n. This means pj(e(t0), a(t0)) =
qj(e(t0), a(t0)) = 0 for 0 ≤ j ≤ n. Since t0 was an arbitrary element of C the last
equality must be satisfied for any t, thus

pj(e(t), a(t)) = qj(e(t), a(t)) = 0, t ∈ C, 0 ≤ j ≤ n.

Since Φ is of degree at most 1 in e(s) and e(t), the polynomials pj and qj for
0 ≤ j ≤ n can be written as

pj(e(t), a(t)) = pj,1(a(t)) + pj,2(a(t))e(t)

qj(e(t), a(t)) = qj,1(a(t)) + qj,2(a(t))e(t)

with suitable polynomials pj,1(y), pj,2(y), qj,1(y), qj,2(y) ∈ C[y]. Again, according
to the previous lemma pj,1(y) = pj,2(y) = qj,1(y) = qj,2(y) = 0, thus pj = qj = 0
for 0 ≤ j ≤ n, and consequently Φ = 0. �

Since the general solution of (Co2) is much more complicated for iteration
groups of type II, we discuss the different cases which can occur in different theo-
rems.

Theorem 16. Assume that α is a solution of (Co1) and (B1) represented as in
Theorem 8, that α0 �= 1, and that π is an iteration group of type II. Then the pair
(α, β) is a solution of (Co2) if and only if

β(s, x) = α0(s)P (s, x)E(π(s, x))
[
F (x) − α0(s)−1 F (π(s, x))

P (s, x)

]
, s ∈ C,

for some F (x) ∈ C [[x]].

Proof. Assume that (α, β) is a solution of (Co2), then (α,∆) is a solution of (Co2′′).
Introducing coefficient functions ∆n by ∆(s, x) =

∑
n≥0 ∆n(s)xn we prove that

each ∆n is a polynomial in the exponential function α−1
0 and in the additive

function πk which is of formal degree 1 in α−1
0 .
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Case 1. Assume that P (s, x) = 1, then (Co2′′) reduces to

∆(s + t, x) = ∆(s, x) + α0(s)−1∆(t, π(s, x)), s, t ∈ C. (Co2′′′)

Expanding the right-hand side of this equation according to Lemma 6, comparison
of coefficients yields for all s, t ∈ C

∆n(s + t) = ∆n(s) + α0(s)−1∆n(t), n < k

∆n(s + t) = ∆n(s) + α0(s)−1
(
∆n(t) + Qn(πk(s),∆1(t), . . . ,∆n+1−k(t))

)
,

n ≥ k,

where Qn is a polynomial linear in ∆j(t) for 1 ≤ j ≤ n + 1 − k. We choose some
t0 ∈ C such that α0(t0) �= 1. Since ∆n(s + t) = ∆n(t + s) we obtain

∆n(s) =
1

1 − α0(t0)−1
∆n(t0)(1 − α0(s)−1), s ∈ C, n < k,

which is a polynomial of formal degree 1 in α0(s)−1. Moreover

∆n(s) =
1

1 − α0(t0)−1

(
∆n(t0)(1 − α0(s)−1)

+α0(t0)−1Qn(πk(t0),∆1(s), . . . ,∆n+1−k(s))

−α0(s)−1Qn(πk(s),∆1(t0), . . . ,∆n+1−k(t0))
)
,

s ∈ C, n ≥ k.

Thus, by induction over n, and by the linearity of Qn in ∆j(s), we obtain

∆n(s) = Rn(α0(s)−1, πk(s)), s ∈ C, n ≥ 0,

where Rn(y, z) ∈ C[y, z] is a polynomial of degree at most 1 in y.
Case 2. If P (s, x) �= 1, then it follows from Remark 9 that P (s, x) =

1 + κrπk(s)xr + . . . , with κr �= 0 and 1 ≤ r < k. Moreover, the coefficient
functions of [P (s, x)]−1 = 1 − κrπk(s)xr + . . . are polynomials in πk(s). Expand-
ing ∆(t, π(s, x)) according to Lemma 6, and multiplying it with [P (s, x)]−1, we
obtain by comparison of coefficients in (Co2′′) that for all s, t ∈ C

∆n(s + t) = ∆n(s) + α0(s)−1∆n(t), n < r

∆n(s + t) = ∆n(s) + α0(s)−1
(
∆n(t) + Qn(πk(s),∆0(t), . . . ,∆n−r(t))

)
,

n ≥ r,

where Qn is a polynomial linear in ∆j(t) for 0 ≤ j ≤ n−r. We choose some t0 ∈ C

such that α0(t0) �= 1. Since ∆n(s + t) = ∆n(t + s) we obtain

∆n(s) =
1

1 − α0(t0)−1

(
∆n(t0)(1 − α0(s)−1)

)
, s ∈ C, n < r,
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and

∆n(s) =
1

1 − α0(t0)−1

(
∆n(t0)(1 − α0(s)−1)

+α0(t0)−1Qn(πk(t0),∆0(s), . . . ,∆n−r(s))

−α0(s)−1Qn(πk(s),∆0(t0), . . . ,∆n−r(t0))
)
,

s ∈ C, n ≥ r.

Also in the second case,

∆n(s) = Rn(α0(s)−1, πk(s)), s ∈ C, n ≥ 0,

where Rn(y, z) ∈ C[y, z] is a polynomial of degree at most 1 in y.
Hence, in both cases we have

∆(s, x) =
∑
n≥0

Rn(α0(s)−1, πk(s))xn, s ∈ C.

Inserting this form into (Co2′′) we get∑
n≥0

Rn(α0(s + t)−1, πk(s + t))xn

=
∑
n≥0

Rn(α0(s)−1, πk(s))xn + α0(s)−1[P (s, x)]−1
∑
n≥0

Rn(α0(t)−1, πk(t))[π(s, x)]n.

We write the right-hand side of this equation as∑
n≥0

Φn(α0(s)−1, α0(t)−1, πk(s), πk(t))xn, s, t ∈ C,

where Φn(x1, x2, x3, x4) ∈ C[x1, x2, x3, x4] is a polynomial of degree at most 1 in
x1 and x2. Hence, for each n ≥ 0 the polynomial relation

Rn(α0(s)−1α0(t)−1, πk(s) + πk(t)) = Φn(α0(s)−1, α0(t)−1, πk(s), πk(t)), s, t ∈ C

is satisfied. According to Lemma 15, we are allowed to replace the values of
α0(s)−1, α0(t)−1, πk(s), πk(t) in these relations by indeterminates U , V , S, T ,
respectively. This yields

Rn(UV, S + T ) = Φn(U, V, S, T ), n ≥ 0.

Finally, we substitute for the indeterminates U , V , S, T the values of regular
exponential and additive functions namely es, et, s, t, respectively. If we define

∆∗(s, x) :=
∑
n≥0

Rn(e−s, s)xn, s ∈ C,

then ∆∗ satisfies

∆∗(s + t, x) = ∆∗(s, x) + e−s ∆∗(t, π∗(s, x))
P ∗(s, x)

, s, t ∈ C (Co2∗∗)
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for the analytic iteration group π∗ introduced in section 2.2. Since the functions
s �→ es and s �→ s are regular, and since the coefficient functions of ∆∗ are
polynomials in these functions, ∆∗ is a solution with entire coefficient functions of
(Co2∗∗) with respect to the analytic iteration group π∗. From Theorem 2.8 of [4]
we derive that there exists F (x) ∈ C [[x]] such that

∆∗(s, x) = F (x) − e−s F (π∗(s, x))
P ∗(s, x)

, s ∈ C.

In this equation we replace, according to Lemma 14, the non-trivial exponential
and additive functions by indeterminates, namely e−s by U and s by S, whence∑

n≥0

Rn(U, S)xn = F (x) − U
F (π∗(S, x))

P ∗(S, x)
.

Finally replacing U by α0(s)−1 and S by πk(s) we derive

∆(s, x) =
∑
n≥0

Rn(α0(s)−1, πk(s))xn

= F (x) − α0(s)−1 F (π∗(πk(s), x))
P ∗(πk(s), x)

= F (x) − α0(s)−1 F (π(s, x))
P (s, x)

, s ∈ C.

Consequently, β is of the given form. Conversely, for each β of this form the pair
(α, β) is a solution of (Co2). �

Now we consider the case α0 = 1. Then (Co2′′) reduces to

∆(s + t, x) = ∆(s, x) +
1

P (s, x)
∆(t, π(s, x)), s, t ∈ C. (Co2′′′′)

In the next theorem we analyze the situations that P (s, x) = 1 + κrπk(s)xr + . . .
with either κr �= 0 and r < k − 1, or r = k − 1 and κk−1 �∈ N0. These are the
generic cases.

Theorem 17. Assume that α is a solution of (Co1) and (B1) represented as in
Theorem 8, that α0 = 1, and that π is an iteration group of type II. In the generic
cases the pair (α, β) is a solution of (Co2) if and only if

β(s, x) = P (s, x)E(π(s, x))
[
F (x) − F (π(s, x))

P (s, x)
+ Q(s, x)

]
, s ∈ C,

where F (x) ∈ C [[x]] and

Q(s, x) =
r−1∑
n=0

∫ τ

0

�n[π∗(σ, x)]n

P ∗(σ, x)E(π∗(σ, x))
dσ
∣∣∣
τ=πk(s)

,

with �0, . . . , �r−1 ∈ C, and where π∗ and P ∗ are introduced in section 2.2.
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Proof. First we prove that

∆(s, x) =
∑
n≥0

Φn(πk(s))xn, s ∈ C

with Φn(y) ∈ C[y]. Afterwards again we investigate the corresponding equation for
the analytic iteration group π∗, use the particular form of these analytic solutions,
and rewrite it by replacing π∗

k by πk in order to derive solutions of (Co2′′′′).
Since we had assumed that

P (s, x) = 1 + κrπk(s)xr + . . . , 1 ≤ r < k, κr �= 0, s ∈ C,

its multiplicative inverse is given by

[P (s, x)]−1 = 1 − κrπk(s)xr + . . . , s ∈ C.

This together with Lemma 6 allows to expand the right-hand side of (Co2′′′′).
Case 1. If r < k − 1, then from (Co2′′′′) we have for all s, t ∈ C

∆n(s + t) = ∆n(s) + ∆n(t), n < r,

∆r(s + t) = ∆r(s) + ∆r(t) − κrπk(s)∆0(t),

∆n(s + t) = ∆n(s) + ∆n(t) − κrπk(s)∆n−r(t)

+Qn(πk(s),∆0(t), . . . ,∆n−r−1(t)), n > r,

where Qn is a polynomial linear in ∆j(t) for 0 ≤ j ≤ n − r − 1. We choose some
t0 ∈ C such that πk(t0) �= 0. Since ∆n(s + t) = ∆n(t + s) we obtain from the first
r equations that ∆n is additive for n < r. From the coefficients of xr we derive

∆0(s) =
1

πk(t0)
∆0(t0)πk(s), s ∈ C.

From the remaining equations we get

∆n−r(s) =
1

κrπk(t0)

(
κr∆n−r(t0)πk(s)

+Qn(πk(t0),∆0(s), . . . ,∆n−r−1(s))

−Qn(πk(s),∆0(t0), . . . ,∆n−r−1(t0))
)
, s ∈ C, n > r.

Hence, by induction we find polynomials Φn(y) ∈ C[y] for n ≥ 0 such that

∆(s, x) =
∑
n≥0

Φn(πk(s))xn, s ∈ C.

Case 2. Assume that r = k − 1 and κr �∈ N0. Here the computations are
similar to the first case, but for n > k − 1 a further term occurs when comparing
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coefficients in (Co2′′′′). To be more precise, for all s, t ∈ C we have

∆n(s + t) = ∆n(s) + ∆n(t), n < k − 1,

∆k−1(s + t) = ∆k−1(s) + ∆k−1(t) − κk−1πk(s)∆0(t),

∆n(s + t) = ∆n(s) + ∆n(t) + (n − k + 1 − κk−1)πk(s)∆n−k+1(t)

+Qn(πk(s),∆0(t), . . . ,∆n−k(t)), n > k − 1,

where Qn is a polynomial linear in ∆j(t) for 0 ≤ j ≤ n − k. We choose some
t0 ∈ C such that πk(t0) �= 0. Since ∆n(s + t) = ∆n(t + s) we obtain from the
equation for ∆k−1 that

∆0(s) =
1

πk(t0)
∆0(t0)πk(s), s ∈ C.

From the equations for ∆n with n > k − 1 we get for s ∈ C

∆n−k+1(s) =
1

(n − k + 1 − κk−1)πk(t0)

(
(n − k + 1 − κk−1)∆n−k+1(t0)πk(s)

+Qn(πk(s),∆0(t0), . . . ,∆n−k(t0))

−Qn(πk(t0),∆0(s), . . . ,∆n−k(s))
)
.

Thus also in this case, by induction we find polynomials Φn(y) ∈ C[y] for n ≥ 0
such that

∆(s, x) =
∑
n≥0

Φn(πk(s))xn, s ∈ C.

From this representation of ∆ we derive in both cases, that if πk is an entire
function, then ∆ is an analytic solution of (Co2). Inserting this form of ∆ into
(Co2′′′′), we obtain∑

n≥0

Φn(πk(s + t))xn =
∑
n≥0

Φn(πk(s))xn + [P (s, x)]−1
∑
n≥0

Φn(πk(t))[π(s, x)]n

=
∑
n≥0

Rn(πk(s), πk(t))xn, s, t ∈ C,

with certain polynomials Rn(y, z) ∈ C[y, z]. Comparison of coefficients yields

Φn(πk(s) + πk(t)) = Rn(πk(s), πk(t)), s, t ∈ C, n ≥ 0.

For n ≥ 0 these are polynomial relations in πk(s) and πk(t). Since πk is a non-
trivial additive function, and these relations hold for all s, t ∈ C, according to
Lemma 5 we are allowed to replace πk(s) and πk(t) by indeterminates S and T ,
which yields

Φn(S + T ) = Rn(S, T ), n ≥ 0.

Now we replace S by π∗
k(s) and T by π∗

k(t), obtaining

Φn(π∗
k(s) + π∗

k(t)) = Rn(π∗
k(s), π∗

k(t)), s, t ∈ C, n ≥ 0.
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This means that ∆∗(s, x) :=
∑

n≥0 Φn(π∗
k(s))xn is an analytic solution of the

equation

∆∗(s + t, x) = ∆∗(s, x) +
1

P ∗(s, x)
∆∗(t, π∗(s, x)), s, t ∈ C (Co2∗∗∗)

for the analytic iteration group π∗. According to Theorem 2.8 of [4] there exist
F (x) ∈ C [[x]] and �0, . . . , �r−1 ∈ C such that

∆∗(s, x) = F (x) − F (π∗(s, x))
P ∗(s, x)

+ Q∗(s, x), s ∈ C,

with

Q∗(s, x) =
r−1∑
n=0

∫ s

0

�n[π∗(σ, x)]n

P ∗(σ, x)E(π∗(σ, x))
dσ.

In this representation of ∆∗ we again replace the non-trivial additive function
π∗

k(s) by the indeterminate S, whence∑
n≥0

Φn(S)xn = F (x) − F (π∗(S, x))
P ∗(S, x)

+ Q∗(S, x).

Finally replacing S by πk(s) we derive

∆(s, x) =
∑
n≥0

Φn(πk(s))xn

= F (x) − F (π∗(πk(s), x))
P ∗(πk(s), x)

+ Q∗(πk(s), x)

= F (x) − F (π(s, x))
P (s, x)

+ Q(s, x), s ∈ C.

Consequently, β is of the given form. Conversely, for each β of this form the pair
(α, β) is a solution of (Co2). �

Finally we have to discuss the two non-generic situations where P (s, x) = 1 or
P (s, x) = 1 + κk−1πk(s)xk−1 + . . . with κk−1 = n1 ∈ N. In both cases we will
realize that an additional additive function occurs in the general solution of ∆.

Theorem 18. Assume that α is a solution of (Co1) and (B1) represented as in
Theorem 8, that α0 = 1, and that π is an iteration group of type II.

• If P (s, x) = 1, then (α, β) is a solution of (Co2) if and only if

β(s, x) = E(π(s, x))
[
A(s) + F (x) − F (π(s, x)) + Q(s, x)

]
, s ∈ C,

where A is an additive function, F (x) ∈ C [[x]], and

Q(s, x) =
k−1∑
n=0

∫ τ

0

�n[π∗(σ, x)]n

E(π∗(σ, x))
dσ
∣∣∣
τ=πk(s)

,

with �0, . . . , �k−1 ∈ C and where π∗ was introduced in section 2.2.
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• If P (s, x) = 1 + κk−1πk(s)xk−1 + . . . with κk−1 = n1 ∈ N, then the pair
(α, β) is a solution of (Co2) if and only if

β(s, x) = P (s, x)E(π(s, x))
[
A(s)δ(x) + F (x) − F (π(s, x))

P (s, x)
+ Q(s, x)

]
,

for s ∈ C, where A is an additive function, δ(x) = xn1 +
∑

n>n1
δnxn is

a formal series, such that A(s)δ(x) is a solution of (Co2′′), F (x) ∈ C [[x]],
and

Q(s, x) =

(
k−2∑
n=0

∫ τ

0

�n[π∗(σ, x)]n

P ∗(σ, x)E(π∗(σ, x))
dσ

+
∫ τ

0

�n1+k−1[π∗(σ, x)]n1+k−1

P ∗(σ, x)
dσ

)∣∣∣∣∣
τ=πk(s)

,

with �0, . . . , �k−2, �n1+k−1 ∈ C and where π∗ and P ∗ were introduced in
section 2.2.

Proof. First we assume that (α, β) is a solution of (Co2), whence (α,∆) is a solution
of (Co2′′) and we determine necessary conditions on the coefficient functions of ∆.

Case 1. If P (s, x) = 1, then (Co2′′) reduces to

∆(s + t, x) = ∆(s, x) + ∆(t, π(s, x)), s, t ∈ C, (Co2′′′′′)

which is similar to (Co1′). The only difference to Theorem 8 is that ∆ has a
coefficient function ∆0. We deduce from (Co2′′′′′) that ∆0 is additive and ∆n(s) =
Ψn(πk(s)) for s ∈ C, n ≥ 1, with Ψn(y) ∈ C[y], analogous to Theorem 8. Thus

∆(s, x) = ∆0(s) +
∑
n≥1

Ψn(πk(s))xn, s ∈ C.

Moreover, we see that ∆̂(s, x) :=
∑

n≥1 Ψn(πk(s))xn is also a solution of
(Co2′′′′′).

Case 2. If P (s, x) = 1+κk−1πk(s)xk−1+ . . . with κk−1 = n1 ∈ N, then similar
computations as in the second case of Theorem 17 yield that ∆n is additive for
n < k − 1, that

∆0(s) =
1

πk(t0)
∆0(t0)πk(s), s ∈ C

for some t0 ∈ C with πk(t0) �= 0, and that for n > k − 1, n �= n1 + k − 1

∆n−k+1(s) =
1

(n − k + 1 − n1)πk(t0)

(
(n − k + 1 − n1)∆n−k+1(t0)πk(s)

+Qn(πk(s),∆0(t0), . . . ,∆n−k(t0))

−Qn(πk(t0),∆0(s), . . . ,∆n−k(s))
) (∆)
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is satisfied for all s ∈ C. Moreover, if n1 < k − 1 then ∆n1 is additive, otherwise
it satisfies an equation of the form

∆n1(s + t) = ∆n1(s) + ∆n1(t) − n1πk(s)∆0(t), if n1 = k − 1

∆n1(s + t) = ∆n1(s) + ∆n1(t) + (1 − k)πk(s)∆n1−k+1(t)

+Qn1(πk(s),∆0(t), . . . ,∆n1−k(t)), if n1 > k − 1.

With the next arguments, which refer to both case 1 and case 2, we want to
prove that in the situation of the present theorem for any solution (α,∆) of (Co2′′)
there exists a solution (α, ∆̃) of (Co2′′) such that the coefficient functions ∆̃n(s)
are just polynomials in πk(s), and such that

∆̃n(t0) = ∆n(t0), n ≥ 0

for some fixed t0 ∈ C with πk(t0) �= 0.
Let α, β, ∆ describe a solution of (Co2) or (Co2′′) and assume that α∗, β∗, ∆∗

are the corresponding solutions of

β∗(s + t, x) = β∗(s, x)α∗(t, π∗(s, x)) + β∗(t, π∗(s, x)), s, t ∈ C (Co2∗)

and (Co2∗∗∗) for the corresponding analytic iteration group π∗ introduced in sec-
tion 2.2. Then

α∗(s, x) = P ∗(s, x)
E(π∗(s, x))

E(x)
, s ∈ C

and according to Theorem 2.5 of [4]

∆∗(s, x) =
β∗(s, x)

α∗(s, x)E(x)
=
∫ s

0

�(π∗(σ, x))
P ∗(σ, x)E(π∗(σ, x))

dσ, s ∈ C,

with �(x) =
∑

n≥0 �nxn ∈ C [[x]]. Since P ∗(s, x)E(π∗(s, x)) ≡ 1 mod x we derive

�(π∗(σ, x))
P ∗(σ, x)E(π∗(σ, x))

=
k−2∑
n≥0

�nxn +
∑

n≥k−1

(�n + ϕn(σ, �0, . . . , �n+1−k)) xn

with polynomials ϕn. Consequently,

∆∗(s, x) =
k−2∑
n≥0

�nsxn +
∑

n≥k−1

(�ns + ϕ̃n(s, �0, . . . , �n+1−k)) xn, s ∈ C (∆∗)

with suitable polynomials ϕ̃n. If we put

∆̃(s, x) := ∆∗(πk(s), x), s ∈ C,

then for any choice of �(x) ∈ C [[x]], the pair (α, ∆̃) is a solution of (Co2′′). Now
we choose some t0 ∈ C such that πk(t0) �= 0. Then for each n ≥ 0 it is possible to
determine �n ∈ C so that ∆̃n(t0) = ∆n(t0), namely

�n =

{
∆n(t0)/πk(t0) for n ≤ k − 2
(∆n(t0) − ϕn(t0, �0, . . . , �n+1−k))/πk(t0) for n ≥ k − 1.
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This way we found a family ∆̃, whose coefficient functions are polynomials in πk

such that ∆̃(t0, x) = ∆(t0, x) for some t0 ∈ C such that πk(t0) �= 0. The family ∆̃
is uniquely determined once t0 is chosen.

Finally we discuss again the two cases mentioned at the beginning of the proof.
Case 1. If P (s, x) = 1, then all the coefficient functions of ∆̂(s, x) are poly-

nomials in πk and ∆̂0 = 0. Moreover, the coefficient functions ∆̂n are uniquely
determined. Furthermore, there exists exactly one ∆̃ whose coefficient functions
are polynomials in πk such that ∆̃(t0, x) = ∆(t0, x) for some t0 ∈ C with πk(t0) �= 0
and such that (α, ∆̃) is a solution of (Co2′′). Hence ∆̂ = ∆̃. According to Theo-
rem 2.8 of [4] there exist F (x) ∈ C [[x]] and �0, . . . , �k−1 ∈ C such that

∆∗(s, x) = F (x) − F (π∗(s, x)) + Q∗(s, x), s ∈ C,

where

Q∗(s, x) =
k−1∑
n=0

∫ s

0

�n[π∗(σ, x)]n

E(π∗(σ, x))
dσ.

Thus

∆̂(s, x) = ∆̃(s, x) = ∆∗(πk(s), x) = F (x) − F (π∗(πk(s), x)) + Q∗(πk(s), x) =

F (x) − F (π(s, x)) + Q(s, x), s ∈ C.

From this representation we immediately get the desired form of β. Conversely,
for each β of this form the pair (α, β) is a solution of (Co2).

Case 2. Assume that (α,∆) and (α, ∆̃) are two solutions of (Co2′′) where the
coefficient functions of ∆̃ are polynomials in πk and where ∆̃(t0, x) = ∆(t0, x) for
some t0 ∈ C with πk(t0) �= 0. Since the coefficient functions ∆n for n < n1 are
uniquely determined by (∆) (following from (Co2′′)) we have

∆n(s) = ∆̃n(s), s ∈ C, n < n1.

Both ∆n1 and ∆̃n1 satisfy the same (inhomogeneous) Cauchy functional equation,
whence there exists an additive function A such that

∆n1(s) = ∆̃n1(s) + A(s), s ∈ C

with A(t0) = 0. For n ≥ n1 we prove by induction that there exists some δn ∈ C

such that
∆n(s) = ∆̃n(s) + δnA(s), s ∈ C.

For n = n1 we have δn1 = 1. Assume that n > n1 and that our claim is true for
all indices less than n. Here it is important to remember that the polynomials
Qn(πk(s),∆0(t), . . . ,∆n−k(t)) occurring in the expansion of ∆n(s + t) are linear
in ∆j(t). To be more precise,

Qn(πk(s),∆0(t), . . . ,∆n−k(t)) =
n−k∑
j=0

∆j(t)qn,j(πk(s)), s, t ∈ C
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with polynomials qn,j(y) ∈ C[y] for 0 ≤ j ≤ n − k and n ≥ k. Applying the
induction assumption on the formula (∆) for ∆n we get

∆n(s) =
1

(n − n1)πk(t0)

(
(n − n1)∆n(t0)πk(s)

+Qn+k−1(πk(s),∆0(t0), . . . ,∆n−1(t0))

−Qn+k−1(πk(t0),∆0(s), . . . ,∆n−1(s))
)

=
1

(n − n1)πk(t0)

(
(n − n1)∆n(t0)πk(s)

+Qn+k−1(πk(s),∆0(t0), . . . ,∆n−1(t0))

−Qn+k−1(πk(t0),∆0(s), . . . ,∆n1−1(s),

∆̃n1(s) + A(s), . . . , ∆̃n−1(s) + δn−1A(s))
)

=
1

(n − n1)πk(t0)

(
(n − n1)∆̃n(t0)πk(s)

+Qn+k−1(πk(s), ∆̃0(t0), . . . , ∆̃n−1(t0))

−Qn+k−1(πk(t0), ∆̃0(s), . . . , ∆̃n−1(s)) + δ̃nA(s)
)

for a suitable δ̃n ∈ C. This means

∆n(s) = ∆̃n(s) + δnA(s), s ∈ C

for a suitable δn ∈ C. Consequently, we have shown that

∆(s, x) = ∆̃(s, x) + A(s)
∑

n≥n1

δnxn, s ∈ C.

By construction

∆̃(s, x) = ∆∗(πk(s), x), s ∈ C

and according to Theorem 2.8 of [4] there exist F (x) ∈ C [[x]] and �0, . . . , �k−2,
�n1+k−1 ∈ C such that

∆∗(s, x) = F (x) − F (π∗(s, x))
P ∗(s, x)

+ Q∗(s, x), s ∈ C,

with

Q∗(s, x) =
k−2∑
n=0

∫ s

0

�n[π∗(σ, x)]n

P ∗(σ, x)E(π∗(σ, x))
dσ +

∫ s

0

�n1+k−1[π∗(σ, x)]n1+k−1

P ∗(σ, x)
dσ.
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For that reason we have

∆(s, x) = ∆̃(s, x) + A(s)
∑

n≥n1

δnxn

= A(s)
∑

n≥n1

δnxn + ∆∗(πk(s), x)

= A(s)
∑

n≥n1

δnxn + F (x) − F (π∗(πk(s), x))
P ∗(πk(s), x)

+ Q∗(πk(s), x)

= A(s)
∑

n≥n1

δnxn + F (x) − F (π(s, x))
P (s, x)

+ Q(s, x), s ∈ C.

Since both (α,∆) and (α, ∆̃) are solutions of (Co2′′), also A(s)δ(x) is a solution
of (Co2). Consequently, β is of the given form.

Conversely, for each β of the form

β(s, x) = P (s, x)E(π(s, x))
[
A(s)δ(x) + F (x) − F (π(s, x))

P (s, x)
+ Q(s, x)

]
, s ∈ C,

where A is an additive function, δ(x) = xn1 +
∑

n>n1
δnxn is a formal series, such

that A(s)δ(x) is a solution of (Co2′′), F (x) ∈ C [[x]], and Q(s, x) equals(
k−2∑
n=0

∫ τ

0

�n[π∗(σ, x)]n

P ∗(σ, x)E(π∗(σ, x))
dσ +

∫ τ

0

�n1+k−1[π∗(σ, x)]n1+k−1

P ∗(σ, x)
dσ

)∣∣∣∣∣
τ=πk(s)

,

with �0, . . . , �k−2, �n1+k−1 ∈ C and where π∗ and P ∗ were introduced in section 2.2,
the pair (α, β) is a solution of (Co2). �

Remark 19. In the second case of the preceding theorem we saw that the coef-
ficient function ∆n1 of a solution (α,∆) of (Co2′′) is not uniquely determined by
(Co2′′). If (α, ∆̃) is also a solution of (Co2′′) then there exists an additive function
A such that ∆n1 = ∆̃n1 +A. In our construction we had assumed, moreover, that
A(t0) = 0 for some t0 ∈ C with πk(t0) �= 0. This is not a severe restriction on A,
since it can always be written as the sum of two additive functions, namely

A(s) =
A(t0)
πk(t0)

πk(s) +
(

A(s) − A(t0)
πk(t0)

πk(s)
)

, s ∈ C.

The first one is a scalar multiple of πk, the second one is the difference of two
additive functions, and by construction, for s = t0 it admits the value 0.

Adding an arbitrary additive function A to ∆̃n1 changes the value of ∆̃(t0, x).
This, of course, leads to the construction of another family ∆∗(s, x). According
to (∆∗) we always find a coefficient �n1 ∈ C such that ∆∗

n1
(t0) = ∆̃n1(t0) + A(t0).

This proves, that we did not forget any solutions in the proof.
The phenomenon of adding a further additive function A multiplied with a

series δ seemingly did not occur in the situation of regular solutions. This is due
to the fact that all regular additive functions are of the form C � s �→ cs with
c ∈ C. Moreover, ct0 = 0 with t0 �= 0 yields immediately c = 0.
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In the situation P (s, x) = 1 + n1πk(s)xk−1 + . . . with n1 ∈ N we have to
describe the solutions of (Co2′′) which are of the form A(s)δ(x) with δ(x) =
xn1 +

∑
n>n1

δnxn ∈ C [[x]].

Theorem 20. Assume that π is an iteration group of type II, and P (s, x) = 1 +
n1πk(s)xk−1 + . . . with n1 ∈ N.

• Let ∆(s, x) := A(s)δ(x), where A is an arbitrary additive function and
δ(x) = xn1 +

∑
n>n1

δnxn ∈ C [[x]]. If A = 0, then ∆ is a solution of (Co2′′)
for any δ. If A �= 0, then ∆ is a solution of (Co2′′) if and only if

P (s, x) =
δ(π(s, x))

δ(x)
, s ∈ C. (P)

• For each iteration group π of type II, there exists exactly one δ(x) ∈ C [[x]],
such that (P) is satisfied.

Proof. If A = 0, then ∆(s, x) = A(s)δ(x) = 0 is a solution of (Co2′′).
Assume that A �= 0. Using the additivity of A, the family ∆ is a solution of

(Co2′′) if and only if

A(t)δ(x) =
1

P (s, x)
A(t)δ(π(s, x)), s, t ∈ C.

Since A �= 0, there exists some t0 ∈ C such that A(t0) �= 0, thus in the last equation
we are allowed to cancel A(t), and we get

δ(x) =
1

P (s, x)
δ(π(s, x)), s ∈ C.

Since ord(δ(x)) = n1 = ord(δ(π(s, x))) the quotient δ(π(s, x))/δ(x) is also a family
of formal series, and we finally obtain that ∆ satisfies (Co2′′), if and only if (P) is
fulfilled.

For each δ(x) = xn1 +
∑

n>n1
δnxn there exists exactly one series E(x) =

1 + . . . ∈ C [[x]] such that δ(x) = xn1E(x). Thus, (P) is satisfied if and only if

P (s, x) =
[π(s, x)]n1

xn1

E(π(s, x))
E(x)

, s ∈ C.

Easy computations show that [π(s, x)]n1/xn1 and also its multiplicative inverse
are solutions of (Co1). Since moreover,

[π(s, x)]n1

xn1
=
[
π(s, x)

x

]n1

= [1 + πk(s)xk−1 + . . .]n1 = 1 + n1πk(s)xk−1 + . . .

the equation (P) is satisfied if and only if

P (s, x)[1 + n1πk(s)xk−1 + . . .]−1 =
E(π(s, x))

E(x)
, s ∈ C.

The left-hand side of this equation is a solution of (Co1) which is congruent 1
modulo xk. According to Theorem 8, solutions of this kind can be expressed
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as E(π(s, x))/E(x) with a uniquely determined series E(x) = 1 + · · · ∈ C [[x]].
Consequently, there exists exactly one series E and thus exactly one family δ
satisfying (P). �

Remark 21. In [4] we had tried to express the solutions of (Co1) with as few
integrals as possible. For iteration groups of type II we just showed that if α(s, x) ≡
α0(s) mod xk then α can be expressed as

α(s, x) = α0(s)
E(π(s, x))

E(x)
, s ∈ C

with E(x) ≡ 1 mod x. From the last theorem we deduce that each solution α of
(Co1) with α(s, x) ≡ α0(s)(1+n1πk(s)xk−1) mod xk and n1 ∈ N can be expressed
as

α(s, x) = α0(s)
δ(π(s, x))

δ(x)
, s ∈ C

with a suitable δ(x) = xn1 +
∑

n>n1
δnxn.

4. Conclusion

This way we described how to compute rather in an explicit way the solutions of
the two cocycle equations for iteration groups without any regularity condition. In
a forthcoming paper we will describe a more abstract way for doing this by investi-
gating formal cocycle equations. It was interesting to realize, that the structure of
the general solutions corresponds in a natural way to the structure of the analytic
solutions.
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