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Summary. In the paper On covariant embeddings of a linear functional equation with respect
to an analytic iteration group [3] the authors described the problem of covariant embeddings of
a linear functional equation with respect to analytic iteration groups and solved it in the generic
cases. However, some cases remained unsolved. In this paper we present the solution for these
open cases.
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1. Introduction

Let C [[x]] be the ring of formal power series in the indeterminate x with complex
coefficients. Consider the linear functional equation

ϕ(p(x)) = a(x)ϕ(x) + b(x), (L)

where p(x), a(x), b(x) ∈ C [[x]] are given formal power series, and ϕ(x) ∈ C [[x]]
should be determined by the functional equation. We always assume that

p(x) = ρx + c2x
2 + c3x

3 + · · · = ρx +
∑
n≥2

cnxn

with multiplier ρ �= 0, and

a(x) = a0 + a1x + a2x
2 + · · · =

∑
n≥0

anxn

with a0 �= 0. For a foundation of the basic calculations with formal power series
we refer the reader to [9] and to [1] or [2].
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L. Reich introduced in [11] the notion of a covariant embedding of (L) with
respect to an analytic iteration group.

The linear functional equation (L) has a covariant embedding with respect
to the analytic iteration group (π(s, x))s∈C of p(x), if there exist families
(α(s, x))s∈C and (β(s, x))s∈C of formal power series with entire coefficient
functions αn and βn for all n ≥ 0

α(s, x) =
∑
n≥0

αn(s)xn, β(s, x) =
∑
n≥0

βn(s)xn

such that

ϕ(π(s, x)) = α(s, x)ϕ(x) + β(s, x) (Ls)

holds for all s ∈ C and for all solutions ϕ(x) of (L) in C [[x]]. Moreover,
it is assumed that α and β satisfy both the boundary conditions

α(0, x) = 1 β(0, x) = 0 (B1)

α(1, x) = a(x) β(1, x) = b(x) (B2)

and the cocycle equations

α(t + s, x) = α(s, x)α(t, π(s, x)) (Co1)

β(t + s, x) = β(s, x)α(t, π(s, x)) + β(t, π(s, x)) (Co2)

for all s, t ∈ C.

In [3] the general solutions of (Co1) and of the system ((Co1),(Co2)) are de-
rived; then these functional equations are solved under the additional boundary
conditions (B1) and (B2). Finally, the next theorem is proved as Theorem 4.1 in
[3], which describes a sufficient condition for the existence of a covariant embedding
of (L) with respect to an analytic iteration group.

Theorem 1. Assume that the linear functional equation (L) has a solution
ϕ(x) ∈ C [[x]], and let (π(s, x))s∈C be an analytic iteration group of p(x). Fur-
thermore, assume that α satisfies (Co1) and the two boundary conditions (B1)
and (B2). If there exists exactly one β, which also satisfies (B1) and (B2), such
that (α, β) is a solution of (Co2), then there exists a covariant embedding of (L)
with respect to the iteration group (π(s, x))s∈C.

Covariant embeddings of a linear functional equation were studied in a much
more general setting by Z. Moszner in [10] and for functions defined on a real
interval by G. Guzik in [5] and [7]. The first cocycle equation is also studied in [6]
and [8].

In [3] we called an analytic iteration group a group of first type, if π(s, x) equals
S−1(eλsS(x)) for all s ∈ C, where λ ∈ C \ {0} and S(x) = x + s2x

2 + . . . . Each
iteration group of this type is simultaneously conjugate to the iteration group
(eλsx)s∈C. Iteration groups of the form π(s, x) = x + cksxk + P

(k)
k+1(s)x

k+1 + . . .

for all s ∈ C, where ck �= 0, k ≥ 2, and P
(k)
r (s) are polynomials in s for r > k, were
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called iteration groups of second type. Each non-trivial analytic iteration group is
either of first or of second type.

In [3] the problem of the existence of a covariant embedding was solved in the
generic cases. There we proved in Theorem 3.5, Theorem 3.11, and Corollary 4.2
the following facts.

1. Assume that (π(s, x))s∈C is an analytic iteration group of the first type
which is simultaneously conjugate to eλsx, where eλ is not a complex root
of 1. Then there exist suitable solutions (α, β) of the system consisting of
(Co1), (Co2), (B1), and (B2) which yield covariant embeddings of (L) with
respect to π.

2. Assume that (π(s, x))s∈C is an analytic iteration group of the second type.
If the coefficient a0 of a(x) is different from 1, then there exist covariant
embeddings of (L) with respect to the iteration group π. Assume that
a0 = 1. Depending on the coefficient function α0 of α(s, x), a solution of
(Co1), we have: If a(x) = 1 then there exists a covariant embedding (α, β)
with α0 = 1. Finally assume that a(x) = 1 +

∑
n≥n0

anxn with an0 �= 0. If

α0(s) = eµs for some µ ∈ 2πiZ \ {0} and
[
n0 < k − 1, or

[
n0 = k − 1 and

ak−1 �= nck for all n ∈ N
]]

1, then there exist covariant embeddings (α, β)
of (L) with respect to the iteration group π, if and only if bn = 0 for all
0 ≤ n < n0. If α0 = 1 and

[
n0 �= k − 1, or

[
n0 = k − 1 and ak−1 �= nck

for all n ∈ N
]]

, then there exists a covariant embedding (α, β) of (L) with
respect to the iteration group π.

The following cases were not investigated so far.

The iteration group (π(s, x))s∈C of the first type is given as

π(s, x) = S−1(eλsS(x)), s ∈ C,

where λ �= 0 and ρ := eλ is a complex root of 1, primitive of order
j0 > 1. As it was shown in [3] this situation can always be simplified to
π(s, x) = eλsx, which yields p(x) = ρx.

⎤
⎥⎥⎥⎥⎥⎦ (1)

The iteration group (π(s, x))s∈C of the first type is given as

π(s, x) = S−1(eλsS(x)), s ∈ C,

where ρ := eλ is not a complex root of 1. As it was shown in [3]
this situation can always be simplified to π(s, x) = eλsx, which yields
p(x) = ρx.
Disregarding the covariant embedding (α, β) of (L) described in Theo-
rem 3.5 of [3], do there exist further solutions (α, β) of (Co1), (Co2),
(B1), and (B2) which are covariant embeddings of (L)?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

1 We use square brackets [. . . ] in order to indicate the logical structure.
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The series p(x), a(x) and b(x) are of the form

p(x) = x + ckxk + P
(k)
k+1(1)xk+1 + . . . , k ≥ 2, ck �= 0,

a(x) = 1 +
∑

n≥k−1

anxn, ak−1 = n1ck, n1 ∈ N,

b(x) =
∑
n≥0

bnxn,

where p(x) is embedded into an analytic iteration group (π(s, x))s∈C

with
π(s, x) = x + cksx + P

(k)
k+1(s)x

k+1 + . . . ,

an analytic iteration group of the second type.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The series p(x), a(x) and b(x) are of the form

p(x) = x + ckxk + P
(k)
k+1(1)xk+1 + . . . , k ≥ 2, ck �= 0,

a(x) = 1 or a(x) = 1 +
∑
n≥k

anxn,

b(x) =
∑
n≥0

bnxn,

where p(x) is embedded into an analytic iteration group (π(s, x))s∈C

with
π(s, x) = x + cksx + P

(k)
k+1(s)x

k+1 + . . . ,

an analytic iteration group of the second type. Disregarding the covari-
ant embeddings (α, β) described in [3] with α0 = 1, what about other
covariant embeddings (α, β) with α0(s) = eµs for some µ ∈ 2πiZ \ {0}?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Whereas in [3] the structure of the set of solutions of (L) did not play an explicit
role, here it will be of importance. The set of solutions of (L) in the special case
(1) was investigated in [4], in a few other situations it will be dealt with in the
present paper. We will list the covariant embeddings of (L) in the various cases at
the very end of this paper.

2. The non-generic situations for iteration groups of type 1

In Theorem 2.6 of [3], we proved that for analytic iteration groups π(s, x) = eλsx
of the first type the general solution α of (Co1) is given by

α(s, x) = eµs E(eλsx)
E(x)

, (5)
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where eµ = a0 and E(x) = 1 + e1x + · · · ∈ C [[x]]. If ρ = eλ is not a complex
root of 1, then according to Theorem 3.2 of [3], for each a(x) there exist solutions
α of (Co1) which satisfy (B2). (The series E(x) is uniquely determined, whereas
µ can be any logarithm of a0.) If ρ is a complex root of 1, then we gave in the
same theorem a necessary and sufficient condition for the existence of solutions α
of (Co1) also satisfying the boundary condition (B2).

2.A ρ is a complex root of 1 primitive of order j0 > 1

Let us first deal with the problem described in (1), hence ρ is a complex root
of 1 primitive of order j0 > 1. Here we present another characterization for the
existence of solutions α of (Co1) which also satisfy (B2). Using the explicit form
of α given above, the boundary condition (B2) for α is

a0
E(ρx)
E(x)

= a(x),

which is equivalent to
E(ρx) = â(x)E(x), (6)

where

â(x) :=
a(x)
a0

. (7)

This is a homogeneous linear functional equation for the unknown series E(x) =
1 + e1x + . . . . Consequently, there exists a solution α of (Co1) and (B2) if and
only if (6) has a non-trivial solution. According to Theorem 5 of [4], there exist
non-trivial solutions E(x) of (6) if and only if

j0−1∏
�=0

â(ρ�x) = 1. (8)

Moreover, from Lemma 2 and Theorem 12 or Theorem 24 of [4] we know that the
homogeneous linear functional equation

ϕ(ρx) = a(x)ϕ(x) (Lh)

has non-trivial solutions if and only if aj0
0 = 1 and (8) is satisfied.

Case 1: If there is no α which satisfies (Co1) and (B2), then there does not
exist a covariant embedding of (L). For that reason, we assume now in case 2
that α is a solution of (Co1) satisfying (B2), whence (8) is also satisfied. In order
to determine all β satisfying (B2) such that (α, β) is a solution of (Co2), in [3]
we introduced the set K = K(λ, µ) := {n ∈ N0 | µ − nλ ∈ 2πiZ}. Actually, this
set does not depend on the particular choice of the values λ = ln ρ and µ = ln a0,
consequently K = {n ∈ N0 | ρn = a0}. Case 2.1: If aj0

0 �= 1, then K = ∅, and it
follows from Theorem 3.4 of [3] that there exists exactly one β of the form

β(s, x) = eµsE(eλsx)[F (x) − e−µsF (eλsx)] (9)
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with F [x] ∈ C [[x]] which satisfies (B2) and together with α also the cocycle equa-
tion (Co1). Hence, we still have to deal with the case 2.2 where aj0

0 = 1, which
means that (Lh) has non-trivial solutions. It also implies that K �= ∅, whence
K = k0 + N0j0 with k0 = min K = min {n ∈ N0 | ρn = a0}. In Theorem 2.8 of [3]
the general solution (α, β) of (Co2) in the present situation was given by (5) and

β(s, x) = eµsE(eλsx)[�n0sx
n0 + F (x) − e−µsF (eλsx)], (10)

where n0 ∈ N0, �n0 ∈ C and F (x) ∈ C [[x]]. Moreover, the summand �n0x
n0 occurs

only in the particular situation when µ = n0λ for some n0 ∈ N0.
Since, given ρ and a0, we are still free to choose the values of µ and λ modulo

integer multiples of 2πi, the integer n0 can be an arbitrary element of K. (For
k ∈ K there exists an integer z such that µ − kλ = 2zπi, which is equivalent to
µ′ := µ − 2zπi = kλ. We used this choice of µ in order to construct covariant
embeddings in [3].) On the other hand, there exist choices of µ and λ such that
µ − nλ �= 0 for all n ∈ N0.

The boundary condition (B2) for the special form of β is

b(x) = a0E(ρx)[�n0x
n0 + F (x) − 1

a0
F (ρx)]. (11)

This can be rewritten as a linear functional equation for the power series F (x),
namely

F (ρx) = a0F (x) + a0�n0x
n0 − b(x)

E(ρx)
. (12)

Depending on �n0 we have to consider two cases. Case 2.2.1: Assume that �n0 = 0
or µ �= nλ for all n ∈ N0, thus �n0x

n0 does not occur. Then it is convenient to
introduce G(x) := −E(x)F (x). By an application of (6), we derive from (11) that

G(ρx) = a(x)G(x) + b(x). (13)

Our assumptions on a(x) already guarantee that the homogeneous linear equa-
tion G(ρx) = a(x)G(x) has non-trivial solutions. The necessary and sufficient
condition on b(x) for the existence of solutions of (L) (or (13)) are given in Theo-
rem 15 of [4] as

j0−1∑
k=0

b(ρkx)∏k
j=0 a(ρjx)

= 0. (14)

Consequently, (L) has solutions if and only if (13) has solutions, which is equivalent
to the existence of solutions (α, β) of (Co1), (Co2), and (B2).

Case 2.2.1.1: If (14) is not satisfied, then for any choice of α satisfying (Co1)
and (B2) there does not exist a β such that (Co2) and (B2) are satisfied, thus
there is no covariant embedding of (L). Hence, we assume in case 2.2.1.2 that
also (14) is satisfied, consequently (13) has solutions G(x), which allow to compute
the solutions F (x) of (12) and the solutions (α, β) of (Co2) and (B2) via (10). Then
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according to Theorem 15 of [4], the set of solutions of (L) is given by the series

ϕ(x) =

[
j0−1∑
n=0

n−1∏
�=0

a(ρ�x)

]−1
⎛
⎝j0

∑
t≥0

ϕtj0x
tj0 −

j0−1∑
n=1

n−1∏
�=0

a(ρ�x)
n−1∑
k=0

b(ρkx)∏k
j=0 a(ρjx)

⎞
⎠,

for any choice of (ϕtj0)t≥0 in C. We claim that in the present situation, i.e. in
case 2.2.1.2, there does not exist a covariant embedding of (L). Assuming that
there were a covariant embedding of (L), each solution of (L) also satisfies (Ls) for
all s ∈ C.

Choosing s0 ∈ C such that τ := eλs0 is not a complex root of 1, we derive from
(Ls)

ϕ(τx) = α(s0, x)ϕ(x) + β(s0, x) (Lτ).

The next lemma proves that the set of solutions of (Lτ) is much smaller than the
set of solutions of (L) which gives a contradiction to the assumption that there
exists a covariant embedding of (L) with respect to π. Smaller means here that
for (L) we can choose the whole family (ϕtj0)t≥0 of coefficients arbitrarily, whereas
for (Lτ) at most one coefficient can be chosen arbitrarily.

Lemma 2. If τ is not a complex root of 1, then the set of solutions of (Lτ) is
either empty, or it consists of exactly one formal power series, or it is given by⎧⎨

⎩
∑
n≥0

ϕnxn | ϕn =
∑n

r=1 αr(s0)ϕn−r + βn(s0)
τn − α0(s0)

for n �= n1, ϕn1 ∈ C

⎫⎬
⎭ ,

where τn1 = α0(s0) for a uniquely determined n1 ∈ N0.

Proof. Introducing coefficients of the series in (Lτ), we derive that ϕ(x) satisfies
(Lτ) if and only if

ϕn(τn − α0(s0)) =
n∑

r=1

αr(s0)ϕn−r + βn(s0)

for all n ∈ N0. If τn �= α0(s0) for all n ∈ N0, then the coefficients of ϕ(x) are
uniquely determined, and there exists exactly one solution of (Lτ). Otherwise,
there exists exactly one n1 ∈ N0 such that τn1 = α0(s0). In this situation there
exist solutions ϕ(x) of (Lτ) if and only if

n1∑
r=1

αr(s0)ϕn1−r + βn1(s0) = 0.

In this case the coefficients ϕn of ϕ(x) are uniquely determined for n �= n1, whereas
ϕn1 is not determined by the functional equation and can be arbitrarily chosen
in C. �
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Finally, we have to consider the case 2.2.2, where µ = n0λ for some n0 ∈ N0

and �n0 �= 0. In this situation we study the linear functional equation (12) for the
unknown series F (x). Denoting a0�n0x

n0 − [E(ρx)]−1b(x) by b̂(x), we derive from
Theorem 15 of [4] that there exist solutions F (x) of (12) if and only if

j0−1∑
k=0

b̂(ρkx)∏k
j=0 a0

= 0. (15)

Using the explicit form of b̂(x) we determine the left-hand side of (15) as
j0−1∑
k=0

b̂(ρkx)
ak+1
0

=
j0−1∑
k=0

1
ak+1
0

(
a0�n0ρ

kn0xn0 − b(ρkx)
E(ρk+1x)

)
.

According to the assumptions on ρ and µ, we have ρkn0 = en0λk = eµk = ak
0 . By

application of (7) and by iteration of (6), the right-hand side of the last expression
yields

j0−1∑
k=0

⎛
⎝�n0x

n0 − b(ρkx)

ak+1
0

(∏k
j=0 â(ρjx)

)
E(x)

⎞
⎠ =

= j0�n0x
n0 −

j0−1∑
k=0

b(ρkx)(∏k
j=0 a(ρjx)

)
E(x)

.

Introducing B(x) as

B(x) :=
j0−1∑
k=0

b(ρkx)∏k
j=0 a(ρjx)

, (16)

we derive that there exist solutions F (x) of (12) if and only if

j0�n0x
n0E(x) = B(x).

From Theorem 12 of [4] we know that B(x) is a solution of (Lh). It is easy to check
that also j0�n0x

n0E(x) satisfies (Lh) since E(x) is a solution of (6) and n0 ∈ K,
i.e. n0 = k0 + r0j0 for some r0 ∈ N0, whence ρn0 = ρk0 = a0.

The next remark describes that in this final situation, i.e. in case 2.2.2 with
B(x) �= 0, it is possible to find a covariant embedding of (L).

Remark 3. Assume that aj0
0 = 1, that â(x) satisfies (8), and that B(x) is given

by (16). If B(x) = 0, then (12) is satisfied only for �n0 = 0, but then we are in the
previous case, where �n0x

n0 did not occur, and there is no covariant embedding
of (L). If B(x) �= 0, then let n0 be the order of B(x). Since B(x) is a solution
of (Lh), it follows from Theorem 10 of [4] that n0 ≡ k0 mod j0, where k0 is the
smallest non-negative integer n such that ρn = a0. Defining �n0 as Bn0/j0, where
Bn are the coefficients of B(x), we get a series

E(x) :=
B(x)

j0�n0x
n0
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satisfying (6) with E(x) ≡ 1 mod x. Moreover, it is possible to determine µ
such that µ = n0λ and eµ = a0. Using (5), we determine a solution α of (Co1)
satisfying (B2). By construction, (15) is satisfied, whence we can find a solution
F (x) of (12) which allows to determine β by (10) such that (α, β) satisfies (Co2)
and (B2). Since B(x) �= 0, the linear equation (L) does not have any solution,
hence the set of solutions of (L), being empty, is trivially a subset of the set of
solutions of (Ls) for each s, and consequently there exists a covariant embedding
of (L).

Summarizing, we proved for the case described in (1)

Theorem 4. Assume that π(s, x) = eλsx is an analytic iteration group of p(x),
thus λ �= 0 is a logarithm of ρ, a complex root of 1 primitive of order j0 > 1.

If â(x) given by (7) does not satisfy (8), then there is no covariant embedding
of (L).

Now we assume that (8) is satisfied. If aj0
0 �= 1, let α be given by (5) with an

arbitrary logarithm µ of a0 and any solution E(x) of (6). Then there exists exactly
one β given by (9) such that (α, β) is a covariant embedding of (L) with respect
to π.

If aj0
0 = 1 let B(x) be given by (16). If B(x) = 0, then (L) has solutions, but

there is no covariant embedding of (L). If B(x) �= 0 let n0 be the order of B(x).
The covariant embeddings in this situation are given by all pairs (α, β) where α is
given by (5) with µ = n0λ, E(x) = B(x)/(Bn0x

n0) and where β is given by (10)
with �n0 = Bn0/j0 and F (x) is an arbitrary solution of (12).

Remark 5. Formal power series p(x) = ρx + c2x
2 + . . . where ρ is a complex

root of 1, primitive of order j0 > 0, which possess an embedding into an analytic
iteration group (π(s, x))s∈C have such embeddings into different iteration groups.
It is well known from iteration theory that a series p(x) as above has an embedding
if and only if there exists S(x) = x + s2x

2 + . . . such that

p(x) = S−1(ρS(x)). (17)

For each solution S of this functional equation, (S−1(eλsS(x))s∈C with eλ = ρ is
an analytic iteration group of p(x), and all analytic iteration groups of p(x) are
obtained in this way. Moreover, different solutions of (17) yield different iteration
groups.

We are now considering the question how the existence of a covariant embedding
of (L) in this situation depends on the iteration group (S−1(eλsS(x))s∈C of p(x).
As it was shown in [3] we may assume that p(x) = ρx. Then the iteration groups
of p(x) are given by (S−1(eλsS(x))s∈C where S(x) = x+s2x

2 + . . . is any solution
of

ρS(x) = S(ρx). (18)

The set of these S, which forms a group with respect to substitution, consists of
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the series
S(x) = x +

∑
k≥1

skj0+1x
kj0+1

with arbitrary skj0+1 ∈ C.
Let λ with eλ = ρ be fixed. We claim that (L) has a covariant embedding with

respect to the iteration group (eλsx)s∈C of p(x) if and only if it has a covariant
embedding with respect to all iteration groups (S−1(eλsS(x))s∈C.

Proof. We consider the general form (S−1(eλsS(x))s∈C of an analytic iteration
group of p(x) = ρx. As it was shown in Theorem 1.3 of [3] we reduce this case
equivalently by the transformation y = S(x) to the situation of an iteration group
(eλsx)s∈C. This yields for (L)

ϕ̃(eλy) = ã(y)ϕ̃(y) + b̃(y) (L̃)

where ã := a ◦ S−1 and b̃ := b ◦ S−1. The system (Ls), (Co1), (Co2), (B1), and
(B2) is equivalent to the system

ϕ̃(eλsy) = α̃(s, y)ϕ̃(y) + β̃(s, y) (L̃s)

α̃(t + s, y) = α̃(s, y)α̃(t, eλsy) (C̃o1)

β̃(t + s, y) = β̃(s, y)α̃(t, eλsy) + β̃(t, eλsy) (C̃o2)

α̃(0, y) = 1 β̃(0, y) = 0 (B̃1)

α̃(1, y) = ã(y) β̃(1, y) = b̃(y) (B̃2)

where α̃(s, y) = α(s, S−1(y)) and β̃(s, y) = β(s, S−1(y)). The necessary and suffi-
cient conditions for the existence of covariant embeddings of (L) with respect to
(eλs)s∈C, given in Theorem 4 are satisfied if and only if the corresponding condi-
tions for the existence of covariant embeddings of (L̃) with respect to (eλs)s∈C are
satisfied, since S is a solution of (18). �

2.B ρ is not a complex root of 1

For the rest of this section we are dealing with the problem described in (2). We
have already repeated that in the present situation there exist α, given by (5),
which satisfy both (Co1) and (B2). Let α be a solution of (Co1) and (B2). We
also introduced the set K = K(µ, λ). Case 1: If K = ∅, then from Theorem 3.4
of [3] it follows that there exists exactly one β which is together with α a solution
of (Co2) and (B2). If K �= ∅, then K is a set of cardinality one, since ρ is not a
complex root of 1. Case 2: Assume that K = {k0} for some k0 ∈ N0. Case 2.1:
If k0, µ, and λ satisfy the equation µ = k0λ, then it is shown in the proof of
Theorem 3.5 of [3] that there exists exactly one β of the form (10) such that (α, β)
is a solution of (Co2) and (B2). So far, it is possible to apply Theorem 1 in order
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to derive that (α, β) yields a covariant embedding of (L). Case 2.2: Assume that
µ − nλ �= 0 for all n ∈ N0. In Theorem 2.8 of [3], the general solution (α, β) of
(Co2) is determined, where β is given by (9) with an arbitrary formal power series
F (x). In Theorem 3.4 of [3] we describe under which conditions β also satisfies
(B2). Here we present another characterization. The boundary condition (B2)
written for β, given by (9), is

b(x) = eµE(ρx)[F (x) − e−µF (ρx)].

Taking into account that E(ρx) satisfies (6) and introducing a formal series
G(x) := −E(x)F (x) we derive b(x) = −a(x)G(x) + G(ρx), which can be writ-
ten as a linear functional equation for G(x), namely

G(ρx) = a(x)G(x) + b(x). (19)

Hence, there exist solutions (α, β) of (Co2) satisfying (B2) if and only if (19) has a
solution, thus if and only if (L) can be solved. For that reason, in the next lemma
we describe the set of solutions of (L) in the situation described in (2).

Lemma 6. Assume that ϕ(x) is a solution of (L) under the assumptions of (2).
If K = ∅, then the coefficients ϕn of ϕ(x) are uniquely determined by

ϕn =
∑n

r=1 arϕn−r + bn

ρn − a0
(20)

for all n ≥ 0.
If K = {k0}, then the coefficients ϕn are uniquely determined by (20) for all

n �= k0, and ϕk0 remains undetermined.
Conversely, if for K = {k0} the coefficient bk0 satisfies the condition

bk0 = −
k0∑

r=1

arϕk0−r,

then for each choice of ϕk0 in C we get a solution ϕ(x) =
∑

n≥0 ϕnxn of (L),
where ϕn are given by (20) for n �= k0.

The simple proof by comparison of coefficients is left to the reader. Here in
case 2 we are only interested in K = {k0}.

Case 2.2.1: If there are no solutions of (L), then it is impossible to find β
such that (α, β) is a solution of (Co2) and (B2), consequently there is no covariant
embedding of (L).

Case 2.2.2: If (L) has solutions, then according to Lemma 6 for each coefficient
ϕk0 there exists a solution ϕ(x) of (L). Moreover, (19) has also solutions, whence
there exist solutions (α, β) of (Co2) and (B2) where β is of the form (9). We claim
that there does not exist a covariant embedding (α, β) of (L) with respect to π. If
we assume that there exists a covariant embedding of (L), then each solution ϕ(x)
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of (L) satisfies for all s ∈ C

ϕ(eλsx) = eµs E(eλsx)
E(x)

ϕ(x) + eµsE(eλsx)
[
F (x) − e−µsF (eλsx)

]
= eµsE(eλsx)

[
ϕ(x)
E(x)

+ F (x)
]
− E(eλsx)F (eλsx).

Hence,
ϕ(eλsx) + E(eλsx)F (eλsx)

E(eλsx)
= eµs

[
ϕ(x)
E(x)

+ F (x)
]

. (21)

The left-hand side of this equation can be written as a formal power series∑
n≥0

Pn(eλs)xn

where the coefficient functions Pn are polynomials in eλs. The right-hand side is
of the form

eµs
∑
n≥0

ζnxn.

Lemma 7. Let Pn(y) be polynomials for n ≥ 0. If λ �= 0 and µ − nλ �= 0 for all
n ∈ N0, then ∑

n≥0

Pn(eλs)xn = eµs
∑
n≥0

ζnxn, ∀s ∈ C (22)

implies that ζn = 0 for all n ≥ 0, whence also Pn(y) = 0 for all n ≥ 0.

Proof. Comparison of coefficients in (22) leads to

Pn(eλs) = eµsζn, ∀s ∈ C, ∀n ≥ 0. (23)

Derivation with respect to s and (23) yield

λeλs dPn

dy
(eλs) = µeµsζn = µPn(eλs) ∀s ∈ C.

Since λ �= 0, eλs takes infinitely many values, thus for each n ≥ 0 the last equality
can be written as an identity in the indeterminate y, namely

λy
dPn(y)

dy
= µPn(y) ∀n ≥ 0.

Introducing coefficients for the polynomials Pn of the form Pn(y) =
∑r(n)

j=0 p
(n)
j yj,

we derive

λ

r(n)∑
j=1

jp
(n)
j yj = µ

r(n)∑
j=0

p
(n)
j yj ∀n ≥ 0,

consequently

(µ − jλ)p(n)
j = 0 for all 0 ≤ j ≤ r(n) ∀n ≥ 0.
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For that reason p
(n)
j = 0 for all j and for all all n ≥ 0, thus Pn(y) = 0 for all n ≥ 0

and the proof is finished. �

The assumptions on λ and µ from case 2.2 in situation (2) guarantee that the
assumptions of Lemma 7 are satisfied. Hence, the equality in (21) holds only in the
case when both sides are equal to zero for all s ∈ C and all solutions ϕ(x) of (L).
(This result also could have been obtained from a more general result published
in [12] as Theorem 6.) Especially for s = 0 we get from the right-hand side of (21)
that all solutions ϕ(x) of (L) satisfy

ϕ(x) = −F (x)E(x),

which is impossible since different solutions ϕ of (L) have different coefficients ϕk0 ,
whereas the right-hand side of the last equation is just one formal power series.
So there is no covariant embedding of (L).

Summarizing, we proved for the case described in (2)

Theorem 8. Assume that π(s, x) = eλsx is an analytic iteration group of p(x),
thus λ is a logarithm of ρ which is not a complex root of 1. Let α, given by (5), be
a solution of (Co1) and (B2) where E(x) = 1 + e1x + . . . is uniquely determined
and µ is a logarithm of a0.

If µ−nλ �∈ 2πiZ for all n ∈ N0, then there exists exactly one β of the form (9)
such that (α, β) is a covariant embedding of (L) with respect to π.

If µ = n0λ for some n0 ∈ N0, then there exists exactly one β of the form (10)
with uniquely determined �n0 but not uniquely determined F (x), such that (α, β)
is a covariant embedding of (L) with respect to π.

Otherwise, i.e. if there exists n0 ∈ N0 such that µ − n0λ ∈ 2πiZ \ {0}, there is
no covariant embedding (α, β) of (L) with respect to π.

3. The non-generic situations for iteration groups of type 2

3.A ak−1 = n1ck for some n1 ∈ N

According to Theorem 2.6 of [3] the general solution α of (Co1) in case (3) is

α(s, x) = eµsPk−1,κk−1(s, x)
E(π(s, x))

E(x)
,

where eµ = 1, E(x) = 1 + e1x + . . . , and

Pk−1,κk−1(s, x) = exp
(

κk−1

∫ s

0

π(σ, x)k−1dσ

)
with κk−1 ∈ C. From Theorem 3.10 and (15) of [3] we derive that for any a(x) it
is possible to find solutions α of (Co1) and (B2). They are given by

α(s, x) = eµsPk−1,ak−1(s, x)
E(π(s, x))

E(x)
, (24)
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with a uniquely determined series E(x) = 1 + e1x + . . . .
Now we assume that α is a solution of (Co1) and (B2). The general solution

(α, β) of (Co2) depends on the special choice of µ. If µ �= 0, then it follows from
Theorem 2.8 of [3] that

β(s, x) = eµsPk−1,ak−1(s, x)E(π(s, x))
[
F (x) − e−µs F (π(s, x))

Pk−1,ak−1(s, x)

]
, (25)

where F (x) is an arbitrary formal power series. According to Theorem 3.11 of [3]
the boundary condition β(1, x) = b(x) is satisfied if and only if bn = 0 for all n <
k−1 and bn1+k−1 satisfies an implicitly given condition, which we do not explain in
more details. However, after Lemma 9 we present another characterization when
β satisfies this boundary condition.

If µ = 0, then it follows from the same theorem that the general solution β(s, x)
is given by

E(π(s, x))Pk−1,ak−1(s, x)· (26)

·
[
F (x) − F (π(s, x))

Pk−1,ak−1(s, x)
+ Q(s, x) + �

∫ s

0

π(σ, x)n1+k−1

Pk−1,ak−1(σ, x)
dσ

]
,

with

Q(s, x) =
k−2∑
n=0

∫ s

0

�nπ(σ, x)n

Pk−1,ak−1(σ, x)E(π(σ, x))
dσ

where F (x) is an arbitrary formal power series and � and �n are arbitrary complex
numbers. In this situation, the boundary condition β(1, x) = b(x) can always be
satisfied. However, β is not uniquely determined as a solution of (Co2) and (B2).

First we determine all solutions of (L). In Lemma 3.12 of [3] it was shown that
(L) has solutions only in the case when bn = 0 for all 0 ≤ n < k − 1.

Lemma 9. Let bn = 0 for all 0 ≤ n < k−1, and let ak−1 = n1ck for some n1 ∈ N.
If ϕ(x) is a solution of (L) under the assumptions of (3), then the coefficients

ϕn of ϕ(x) are uniquely determined by

ϕn =
∑n+k−1

r=k arϕn+k−1−r + bn+k−1 − Qn(ϕ1, . . . , ϕn−1)
nck − ak−1

(27)

for n �= n1, with universal polynomials Qn(ϕ1, . . . , ϕn−1). The coefficient ϕn1

remains undetermined. Conversely, if ϕn are given by (27) for n �= n1 and if the
coefficient bn1+k−1 satisfies the condition

bn1+k−1 = Qn1(ϕ1, . . . , ϕn1−1) −
n1+k−1∑

r=k

arϕn1+k−1−r, (28)

then for each choice of ϕn1 in C we obtain a solution ϕ(x) =
∑

n≥0 ϕnxn of (L).



74 H. Fripertinger and L. Reich AEM

Proof. The series ϕ(x) =
∑

n≥0 ϕnxn is a solution of (L) if and only if

∑
n≥0

ϕn[p(x)]n =

⎛
⎝1 +

∑
n≥k−1

anxn

⎞
⎠
⎛
⎝∑

n≥0

ϕnxn

⎞
⎠+

∑
n≥k−1

bnxn.

The left-hand side of this equation yields

ϕ0 +
∑
n≥1

ϕn[x + ckxk + P
(k)
k+1(1)xk+1 + . . . ]n =

ϕ0 +
∑
n≥1

ϕn(xn + nckxn−1+k + nP
(k)
k+1(1)xn+k + . . . ).

Hence, ϕ(x) is a solution of (L) if and only if

ϕ0 +
∑
n≥1

ϕn(xn + nckxn−1+k + nP
(k)
k+1(1)xn+k + . . . ) =

∑
n≥0

ϕnxn +
∑

n≥k−1

(
n∑

r=k−1

arϕn−r + bn

)
xn,

which is equivalent to

∑
n≥1

ϕn(nckxn−1+k + nP
(k)
k+1(1)xn+k + . . . ) =

∑
n≥k−1

(
n∑

r=k−1

arϕn−r + bn

)
xn.

Comparing the coefficients of xj+k−1 for j ≥ 0, we get by induction necessary and
sufficient conditions on the coefficients for the existence of a solution of (L):

−ak−1ϕ0 = bk−1 j = 0

(jck − ak−1)ϕj =
j+k−1∑

r=k

arϕj+k−1−r + bj+k−1 − Qj(ϕ1, . . . , ϕj−1), j > 0

where Qj(ϕ1, . . . , ϕj−1) are universal polynomials in the coefficients ϕ1, . . . , ϕj−1.
This yields for j �= n1 a unique way to determine ϕj by (27).

In order to satisfy the necessary and sufficient condition for the existence of a
solution of (L) in the case j = n1, the coefficient ϕn1 can be chosen arbitrarily in
C if and only if (28) is satisfied. �

Now we come back to the boundary condition β(1, x) = b(x) for µ �= 0. Since
eµ = 1 and since α satisfies (Co1) and (B2) we have

a(x) = Pk−1,ak−1(1, x)
E(p(x))
E(x)

. (29)
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The boundary condition for β of the form (25) is

b(x) = Pk−1,ak−1(1, x)E(p(x))
[
F (x) − F (p(x))

Pk−1,ak−1(1, x)

]

= Pk−1,ak−1(1, x)E(p(x))F (x) − E(p(x))F (p(x)).

Introducing the formal power series G(x) := −E(x)F (x) and applying (29) yields

G(p(x)) = a(x)G(x) + b(x).

Consequently, we derive that β satisfies the boundary condition (B2) if and only
if the linear functional equation (L) has a solution.

The next lemma will be applied in the proof of Lemma 11. It could also be
deduced from a more general result published in [12] as Theorem 6.

Lemma 10. For n ≥ 0 let Qn(y) be universal polynomials. If µ �= 0, then∑
n≥0

Qn(s)xn = eµs
∑
n≥0

ζnxn, ∀s ∈ C (30)

implies that ζn = 0 for all n ≥ 0, whence also Qn(y) = 0 for all n ≥ 0.

Proof. Comparison of coefficients in (30) leads to

Qn(s) = eµsζn, ∀s ∈ C, ∀n ≥ 0. (31)

Derivation with respect to s and (31) yield

Q′
n(s) = µeµsζn = µQn(s) ∀s ∈ C,∀n ≥ 0.

Thus, for each n ≥ 0 the last equality can be written as an identity in the inde-
terminate y, namely

Q′
n(y) = µQn(y) n ≥ 0.

This is a homogeneous linear differential equation which has the general solution
Qn(y) = ceµy. Under the additional assumption that Qn is a polynomial we get
c = 0, whence Qn = 0 for all n ≥ 0 and the proof is finished. �

In the next lemma we prove that there is no covariant embedding of (L) in-
volving a solution α of (Co1) and (B2) with µ �= 0.

Lemma 11. If α is a solution of (Co1) and (B2) with µ �= 0, then (L) does not
have a covariant embedding (α, β) under the hypotheses of (3).

Proof. Assuming that (α, β) is a covariant embedding of (L) with µ �= 0, then β
is a solution of (Co2) and (B2), whence necessarily (L) has solutions, thus bn = 0
for all 0 ≤ n < k − 1. Hence the general assumption of Lemma 9 is satisfied.
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Moreover, we derive that there exist formal power series E(x) = 1+ e1x+ . . . and
F (x) such that

ϕ(π(s, x)) = eµsPk−1,ak−1(s, x)
E(π(s, x))

E(x)
ϕ(x)+

eµsPk−1,ak−1(s, x)E(π(s, x))
[
F (x) − e−µs F (π(s, x))

Pk−1,ak−1(s, x)

]

= eµsPk−1,ak−1(s, x)E(π(s, x))
[

ϕ(x)
E(x)

+ F (x)
]
−

E(π(s, x))F (π(s, x))

holds for all solutions ϕ(x) of (L) and all s ∈ C. Hence,

ϕ(π(s, x)) + E(π(s, x))F (π(s, x))
Pk−1,ak−1(s, x)E(π(s, x))

= eµs

[
ϕ(x) + E(x)F (x)

E(x)

]
(32)

holds for all solutions ϕ(x) of (L) and all s ∈ C. The left-hand side of this equation
can be written as a formal power series∑

n≥0

Qn(s)xn

where the coefficient functions Qn are polynomials in s. The right-hand side is of
the form

eµs
∑
n≥0

ζnxn.

Since µ �=0, it follows from Lemma 10 that both sides of (32) vanish, and conse-
quently ϕ(x) = −E(x)F (x). In other words, for all solutions ϕ(x) =

∑
n≥0 ϕnxn

of (L) ∑
n≥0

ϕnxn = −
∑
n≥0

( n∑
r=0

erfn−r

)
xn

is satisfied. Comparing the coefficients for xn1 , we see that this is impossible since
according to Lemma 9 two different solutions ϕ(x) and ϕ̃(x) of (L) have different
coefficients ϕn1 �= ϕ̃n1 . Thus we end up with a contradiction. �

Hence, we only have to investigate the situation where α is a solution of (Co1)
with µ = 0. As case 1 we assume that (L) has solutions, whence bn = 0 for
all 0 ≤ n < k − 1 and bn1+k−1 satisfies (28). If ϕ(x) =

∑
n≥0 ϕnxn and ϕ̃(x) =∑

n≥0 ϕ̃nxn are two different solutions of (L), then according to Lemma 9 we have
ϕn = ϕ̃n for n < n1, ϕn1 �= ϕ̃n1 , and ψ(x) := ϕ(x)− ϕ̃(x) is a formal power series
of order n1, which is a solution of the homogeneous linear equation

ψ(p(x)) = a(x)ψ(x). (Lh)

Since α is a solution of (Co1) and π(m,x) = pm(x), the m-th iterate of p(x)
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for m ∈ N, we also derive that

ψ(pm(x)) = ψ(π(m,x)) = α(m,x)ψ(x) (Lh,m)

for all m ∈ N.
In the proof of Theorem 1 (cf. [3]) we showed that for a solution ϕ(x) of (L)

and a solution α the family (Φϕ(s, x))s∈C of formal power series

Φϕ(s, x) := ϕ(π(s, x)) − α(s, x)ϕ(x)

satisfies the boundary conditions (B1), (B2), and together with α the cocycle
equation (Co2). In other words, (Φϕ(s, x))s∈C is a solution β of (Co2) under the
additional boundary conditions. In order to guarantee in the present situation the
existence of a covariant embedding, we only have to check whether (Φϕ(s, x))s∈C

determines for all solutions ϕ(x) of (L) the same family β. If it is so, then there
exists a covariant embedding of (L) with respect to the analytic iteration group
(π(s, x))s∈C, since then ϕ(π(s, x)) = α(s, x)ϕ(x)+Φϕ(s, x) = α(s, x)ϕ(x)+β(s, x),
for all solutions ϕ(x) of (L). Otherwise there is no covariant embedding.

If ϕ(x) and ϕ̃(x) denote two solutions of (L), and if ψ(x) is the difference
ϕ(x) − ϕ̃(x), then

Φϕ(s, x) − Φϕ̃(s, x) = ϕ(π(s, x)) − α(s, x)ϕ(x) − ϕ̃(π(s, x)) + α(s, x)ϕ̃(x) =

ψ(π(s, x)) − α(s, x)ψ(x).

Hence, Φϕ(s, x) = Φϕ̃(s, x) for all s ∈ C if and only if ψ(π(s, x)) = α(s, x)ψ(x) for
all s ∈ C. Inserting the explicit form of α and using the fact that µ = 0, there
exists a covariant embedding of (L) with respect to π if and only if

ψ(π(s, x)) = Pk−1,ak−1(s, x)
E(π(s, x))

E(x)
ψ(x) (33)

for all solutions ψ(x) of (Lh). This is equivalent to

ψ(π(s, x))
E(π(s, x))Pk−1,ak−1(s, x)

=
ψ(x)
E(x)

for all solutions ψ of (Lh). Now we introduce coefficients for

ψ(π(s, x))
E(π(s, x))Pk−1,ak−1(s, x)

=: Ψψ(s, x) =
∑
n≥0

Ψψ
n(s)xn

and for
ψ(x)
E(x)

=: Θψ(x) =
∑
n≥0

Θψ
nxn.

The coefficient functions Ψψ
n are polynomials in s. As a consequence of (Lh,m) we

derive that that Ψψ
n(m) = Θψ

n for all m ∈ N, all n ≥ 0, and all solutions ψ of (Lh).
Since the last relation is a polynomial relation, it holds for all s ∈ C, and (33) is
satisfied for all s ∈ C and all solutions ψ of (Lh). This means that there exists a
covariant embedding of (L).
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In case 2 we assume that (L) does not have any solutions. In this situation
however each solution (α, β) of the system (Co1), (Co2), (B1), and (B2) is a
covariant embedding of (L) with respect to π. According to Theorem 3.11 of [3]
this system of functional equations can always be solved, whence there always
exists a covariant embedding of (L).

Summarizing we proved for the situation described in (3)

Theorem 12. Assume that π(s, x) = x + cksxk + . . . , with k ≥ 2 and ck �= 0, is
an analytic iteration group of p(x).

Let α, given by (24), be a solution of (Co1) and (B2) where µ is a logarithm
of 1.

If µ �= 0, then there is no covariant embedding (α, β) of (L) with respect to π.
If µ = 0 and bn = 0 for 0 ≤ n < k − 1 and bn1+k−1 satisfies (28), then there

exists exactly one β given by

β(s, x) = ϕ(π(s, x)) − α(s, x)ϕ(x)

for an arbitrary solution ϕ(x) of (L), such that (α, β) is a covariant embedding of
(L) with respect to π.

If µ = 0 and
[
there exists at least one n ∈ {0, . . . , k − 2} such that bn �= 0

or bn1+k−1 does not satisfy (28)
]
, then (L) does not have any solutions, but any

solution (α, β) of (Co2) and (B2) is a covariant embedding of (L) with respect to π.
The families β which occur in these covariant embeddings are given by (26) with
uniquely determined Q(s, x) and �, but not uniquely determined F (x) ∈ C [[x]].

3.B Covariant embeddings in certain cases with µ �= 0

Finally we are dealing with the problem presented in (4). According to Theo-
rem 2.6 of [3] the general solution α of (Co1) is

α(s, x) = eµs E(π(s, x))
E(x)

, (34)

where eµ = 1 and E(x) = 1 + e1x + · · · ∈ C [[x]]. According to Theorem 3.6 of
[3] for any a(x) satisfying the assumptions of (4) it is possible to find solutions
α of (Co1) and (B2). They are given by (34) with a uniquely determined series
E(x) = 1 + e1x + . . . . In order to deal with the problem described in (4) we can
restrict to solutions α with µ �= 0.

Assuming that α is a solution of (Co1) and (B2) with µ �= 0, the general
solution (α, β) of (Co2) is given in Theorem 2.8 of [3] by

β(s, x) = eµsE(π(s, x))
[
F (x) − e−µsF (π(s, x))

]
,

where F (x) is an arbitrary formal power series. According to Theorem 3.11 of
[3] the boundary condition β(1, x) = b(x) is satisfied if and only if bn = 0 for all
n < k. However β is not uniquely determined, since the coefficient f0 of F (x) is
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not determined by (B2). Hence, there may exist covariant embeddings of (L) in
the situation (4) only if bn = 0 for all n < k.

First we determine all solutions of (L) for the situation described in (4) with
bn = 0 for all 0 ≤ n < k.

Lemma 13. Assume that a(x) = 1+
∑

n≥k anxn and bn = 0 for all 0 ≤ n < k. If
(L) has a solution, then the coefficient ϕ0 of a solution ϕ of (L) is not determined,
however, ϕn for n ≥ 1 are uniquely determined (depending on ϕ0).

Conversely, if bn = 0 for all 0 ≤ n < k, then for each ϕ0 ∈ C there exists
exactly one solution ϕ of (L) such that ϕ ≡ ϕ0 mod x.

More generally, it can be proved that (L) has a solution if and only if bn = 0
for 0 ≤ n < k.

Proof. Using the same methods as in the proof of Lemma 9 we derive that

ϕ(p(x)) = ϕ0 +
∑
n≥1

ϕn(xn + nckxn−1+k + nP
(k)
k+1(1)xn+k + . . . ).

Hence, each solution ϕ of (L) satisfies

∑
n≥1

ϕn(nckxn−1+k + nP
(k)
k+1(1)xn+k + . . . ) =

∑
n≥k

(
n∑

r=k

arϕn−r + bn

)
xn. (35)

Comparing the coefficients of xk+j for j ≥ 0, we get

(j + 1)ϕj+1ck =
k+j∑
r=k

arϕk+j−r + bk+j − Qj(ϕ1, . . . , ϕj−1)

where Qj(ϕ1, . . . , ϕj−1) are universal polynomials in the coefficients ϕ1, . . . , ϕj−1,
which are already determined. This yields for n = j + 1 �= 0 a unique way to
determine ϕn by

ϕj+1 =
1

(j + 1)ck

(
k+j∑
r=k

arϕk+j−r + bk+j − Qj(ϕ1, . . . , ϕj−1)

)
. (36)

Conversely, if ϕ0 is an arbitrary complex number and ϕj+1 given by (36) for
j ≥ 0, then (35) is satisfied, thus ϕ(x) =

∑
n≥0 ϕnxn is a solution of (L).

If the series ϕ is a solution of (L), then∑
n≥0

ϕnxn +
∑
n≥1

ϕn(nckxn−1+k + nP
(k)
k+1(1)xn+k + . . . ) =

∑
n≥0

ϕnxn +
∑
n≥k

(
n∑

r=k

arϕn−r + bn

)
xn +

k−1∑
n=0

bnxn.

Comparison of coefficients yields,
∑k−1

n=0 bnxn = 0 and (35) is satisfied. �
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From the last lemma we deduce the following characterization: It is possible
to find a solution (α, β) of (Co2) and (B2) with µ �= 0 if and only if (L) can be
solved.

Hence, if (L) has no solutions, then there does not exist a covariant embedding
of (L) with respect to π. From now on we assume that (L) has solutions, thus for
each ϕ0 ∈ C there exists exactly one solution ϕ of (L) with ϕ ≡ ϕ0 mod x.

Using exactly the same method as in the proof of Lemma 11 we can prove

Lemma 14. If α is a solution of (Co1) with µ �= 0, then (L) does not have a
covariant embedding (α, β) under the hypotheses of (4).

Proof. Assuming that (α, β) is a covariant embedding of (L) with µ �= 0, then β
is a solution of (Co2) and (B2), whence necessarily (L) has solutions, thus bn = 0
for all 0 ≤ n < k. Moreover, we derive that there exist formal power series
E(x) = 1 + e1x + . . . and F (x) such that

ϕ(π(s, x)) + E(π(s, x))F (π(s, x))
E(π(s, x))

= eµs

[
ϕ(x) + E(x)F (x)

E(x)

]

holds for all solutions ϕ(x) of (L) and all s ∈ C. Since µ �= 0, it follows from
Lemma 10 that both sides of (32) vanish, and consequently ϕ(x) = −E(x)F (x) for
all solutions ϕ of (L). This leads to a contradiction, since according to Lemma 13
there exist different solutions ϕ of (L). �

Summarizing we proved for the situation described in (4)

Theorem 15. Let π(s, x) = x+cksxk + . . . , with k ≥ 2 and ck �= 0, be an analytic
iteration group of p(x) and let α, given by (34), with µ �= 0 be a solution of (Co1)
and (B2). Then there is no covariant embedding (α, β) of (L) with respect to the
analytic iteration group π.

4. The situation of the improper functional equation

If p(x) = x, then (L) also makes sense, but then it is not a functional equation in
the usual sense. Nevertheless it is possible to study the covariant embeddings of
(L) in this situation as well, i.e. the embedding problem for

ϕ(x) = a(x)ϕ(x) + b(x).

All the analytic iteration groups of p(x) are of the form (π(s, x))s∈C, where
π(s, x) = S−1(e2πizsS(x)) with an arbitrary integer z and an arbitrary series S of
the form S(x) = x + s2x

2 + . . . . Depending on z we have to consider two cases,
namely z �= 0 and z = 0.
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4.A Embeddings with respect to iteration groups of type 1

Assume that π is an analytic iteration group of the first type, whence it is of the
form

π(s, x) = S−1(eλ0sS(x))

where 2πiz =: λ0 �= 0 and eλ0 = 1. Hence (cf. Theorem 1.3 of [3]) we may assume
by an appropriate transformation of the indeterminate x that π(s, x) = eλ0sx for
all s ∈ C.

From Corollary 2.3 of [3] we get that the general solution α of (Co1) is given
by

α(s, x) = eµs E(eλ0sx)
E(x)

(37)

where E(x) = 1 + e1x + . . . and eµ = a0. In order to determine all α which also
satisfy the boundary condition (B2), we introduced the set J = J(λ0) which in
the present situation equals the set of all natural numbers. As a consequence of
Theorem 3.2 of [3] it is possible to adapt the solution α to the boundary condition
(B2) if and only if a(x) = a0. In this situation any formal power series E(x) with
constant term equal to 1 can be used to determine a family α.

Assume that α of the form (37) is a solution of (Co1) and (B2). If µ−nλ0 �= 0
for all n ∈ N0, then according to Theorem 2.8 of [3] the general solution (α, β) of
(Co2) is given by

β(s, x) = eµsE(eλ0ss)[F (x) − e−µsF (eλ0sx)] (38)

where F (x) is an arbitrary formal power series. If µ = n0λ0 for some n0 ∈ N0,
then

β(s, x) = eµsE(eλ0ss)[�n0sx
n0 + F (x) − e−µsF (eλ0sx)] (39)

with �n0 ∈ C and F (x) ∈ C [[x]]. In order to determine all the solutions (α, β) of
(Co2) and (B2), we introduced the set K = K(µ, λ0). In the present situation
K = ∅ if µ �∈ 2πiZ, and K = N0 if µ ∈ 2πiZ. From Theorem 3.4 of [3] it follows
that if K = ∅, then there exists exactly one series F (x) such that β of the form
(38) satisfies both (Co2) and (B2). If K = N0 and µ �= nλ0 for all n ∈ N0, then
β of the form (38) satisfies (B2) if and only if b(x) = 0. Finally, if K = N0 and
µ = n0λ0 for some n0 ∈ N0, then β of the form (39) satisfies (B2), if and only if
b(x) = �n0E(x)xn0 for some �n0 ∈ C. If in the last two situations b(x) satisfies the
necessary condition, then any F (x) can be used to determine β.

Theorem 16. Assume that p(x) = x is embedded into the analytic iteration group
(π(s, x))s∈C with π(s, x) = eλ0sx for λ0 ∈ 2πiZ \ {0}.

If a(x) ∈ C [[x]] \ C, then there is no covariant embedding of (L).
Assume that a(x) = a0 (and moreover a0 �= 0 as a general assumption), and

let α be a solution of (Co1) and (B2) given by (37) where µ is a logarithm of a0

and E(x) = 1 + e1x + . . . an arbitrary series in C [[x]].
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If a0 �= 1, then there is exactly one β of the form (38) such that (α, β) is a
covariant embedding of (L) with respect to π.

If a0 = 1 and µ−nλ0 �= 0 for all n ∈ N0, then there is no covariant embedding
(α, β) of (L) with respect to π.

If a0 = 1 and µ = n0λ0 for some n0 ∈ N0, then the pairs (α, β) with β given
by (39), where �n0 �= 0 and F (x) is an arbitrary series, is a covariant embedding
of (L) with respect to π if and only if b(x) = �n0E(x)xn0 .

Proof. The existence of a solution α of (Co1) which satisfies (B2) is a necessary
condition for the existence of a covariant embedding of (L). Hence, only in the
case a(x) = a0 it may be possible to find covariant embeddings of (L). For that
reason we assume that a(x) = a0 and that α is a solution of (Co1) and (B2).

Case 1: If a0 �= 1, then µ �∈ 2πiZ, whence K = ∅. Consequently the series
F (x) defining β is uniquely determined by (B2), and from Theorem 1 we deduce
that there exist covariant embeddings of (L) with respect to π.

Case 2: If a0 = 1, then K = N0. Case 2.1: If µ �= nλ0 for all n ∈ N0, then
a necessary condition for adapting a solution (α, β) of (Co2) to (B2) is b(x) = 0.
Consequently, (L) becomes ϕ(x) = ϕ(x) which is satisfied by any formal series
ϕ(x). If there were a covariant embedding (α, β) of (L), then for each s ∈ C and
for any ϕ(x) ∈ C [[x]] the equation

ϕ(eλ0sx) = α(s, x)ϕ(x) + β(s, x)

holds. If we choose s0 ∈ C such that τ := eλ0s0 is not a complex root of 1, then the
equation above yields ϕ(τx) = α(s0, x)ϕ(x) + β(s0, x), and according to Lemma 2
the set of solutions of this equation is smaller than C [[x]], which is a contradiction
to the assumption that there is a covariant embedding of (L).

Case 2.2: If µ = n0λ0 for some n0 ∈ N0, then there exist solutions (α, β) of
(Co2) and (B2) if and only if b(x) = �n0E(x)xn0 . If �n0 = 0 the same method
as above proves that there is no covariant embedding (α, β) of (L). If, however,
�n0 �= 0 then (L) has no solutions, whence all pairs (α, β) which are solutions of
(Co1), (Co2), and (B2) are covariant embeddings of (L) with respect to π. �

4.B Embeddings with respect to π(s, x) = x

Now we consider the situation z = 0, whence π(s, x) = x for all s ∈ C. In
order to derive the form of the general solution α of (Co1), we have to go back to
Corollary 2.3 of [3]. We get

α(s, x) = eµs exp
∫ s

0

K(x)dσ

where K(x) is a formal power series of order ≥ 1. Hence

α(s, x) = eµs exp(sK(x)). (40)
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Moreover, α satisfies (B2) if and only if eµ = a0 and K(x) = ln(a(x)/a0).
Let α be a solution of (Co1) and (B2). The general solution β of (Co2) is given

in Theorem 2.5 of [3] as

β(s, x) = α(s, x)
∫ s

0

L(x)
α(σ, x)

dσ. (41)

with L(x) ∈ C [[x]].
If µ �= 0 or K(x) �= 0, then

β(s, x) = eµs exp(sK(x))L(x)
∫ s

0

e−µσ exp(−σK(x))dσ =

eµs exp(sK(x))L(x)
(

1 − e−µσ exp(−σK(x))
K(x) + µ

∣∣∣s
0

)
=

eµs exp(sK(x))L(x)
1 − e−µs exp(−sK(x))

K(x) + µ
=

L(x)(α(s, x) − 1)
K(x) + µ

.

In this situation β(s, x) is indeed a formal power series. (If µ �= 0, then ord(K(x)+
µ) = 0, and the reciprocal of K(x) + µ exists in C [[x]]. If µ = 0 then K(x) �= 0,
and K(x) is a divisor of α(s, x) − 1 = exp(sK(x)) − 1 by (40).)

If both µ = 0 and K(x) = 0, then α(s, x) = 1 and from (41) it follows that

β(s, x) = sL(x)

with an arbitrary formal power series L(x).
How to adapt these solutions β to the boundary condition (B2)? Case 1: If

a0 �= 1, then there exists exactly one L(x) such that β(1, x) = b(x), namely

L(x) = [a(x) − 1]−1(K(x) + µ)b(x). (42)

In case 2 we assume that a0 = 1. Case 2.1: If a(x) = 1, then K(x) = 0 and
µ = ln 1. Case 2.1.1: If µ = 0, then β(s, x) = sL(x), and β(1, x) equals b(x) if
and only if L(x) = b(x). Thus, there exists exactly one β satisfying the boundary
condition. In case 2.1.2 we assume that µ �= 0. Then β(s, x) = L(x)(α(s, x)−1)/µ
satisfies (B2) if and only if b(x) = 0, and then any series L(x) can be used to
determine β.

Case 2.2: Let a(x) = 1 + atx
t + . . . , t ≥ 1, and at �= 0. Hence ord(K(x)) = t.

Introducing coefficients in an obvious way, (B2), which can be written as

L(x)(a(x) − 1) = (K(x) + µ)b(x),

is equivalent to⎛
⎝∑

n≥0

�nxn

⎞
⎠
⎛
⎝∑

n≥t

anxn

⎞
⎠ =

⎛
⎝µ +

∑
n≥t

knxn

⎞
⎠
⎛
⎝∑

n≥0

bnxn

⎞
⎠ .

If µ = 0, which is case 2.2.1, then there exists exactly one L(x) with coefficients

�n =
∑t+n

r=t krbt+n−r −
∑t+n

r=t+1 ar�t+n−r

at
(43)
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for n ≥ 0. Finally in case 2.2.2 we assume that µ �= 0. Then necessarily bn = 0
for 0 ≤ n < t, if (B2) is satisfied. If this condition is fulfilled, then the series L(x)
is uniquely determined with coefficients

�n =
∑t+n

r=t krbt+n−r + µbt+n −∑t+n
r=t+1 ar�t+n−r

at
(44)

for n ≥ 0.
The solutions of the improper functional equation (L) for p(x) = x are described

in the next

Lemma 17. If a0 �= 0, then there exists exactly one solution ϕ of (L).
If a(x) = 1, then there exist solutions of (L) if and only if b(x) = 0. If b(x) = 0,

then any formal power series ϕ(x) satisfies (L).
If a(x) = 1 + atx

t + . . . , t ≥ 1 and at �= 0. The necessary and sufficient
conditions for the existence of solutions of (L) are bn = 0 for 0 ≤ n < t. If they
are satisfied, then the solution of (L) is uniquely determined.

Theorem 18. Assume that p(x) = x is embedded into the analytic iteration group
(π(s, x))s∈C with π(s, x) = x.

Assume that the coefficient a0 of a(x) is different from 1. Let α be a solution
of (Co1) and (B2) given by (40) with a uniquely determined series K(x) and with
an arbitrary logarithm µ of a0. Then there exists exactly one β given by (41) and
(42) such that (α, β) is a covariant embedding of (L) with respect to π.

Assume that a(x) = 1. Let α be a solution of (Co1) and (B2) given by (40)
with K(x) = 0 and with an arbitrary logarithm µ of 1. If µ = 0 then there exists
exactly one β given by β(s, x) = sb(x) such that (α, β) is a covariant embedding
of (L) with respect to π. If µ �= 0 then there is no covariant embedding (α, β) of
(L) with respect to π.

Assume that a(x) = 1+atx
t + . . . with t ≥ 1 and at �= 0. Let α be a solution of

(Co1) and (B2) given by (40) with a uniquely determined series K(x) and with an
arbitrary logarithm µ of 1. If µ = 0, then there exists exactly one β given by (41),
where the coefficients of L(x) are given by (43), such that (α, β) is a covariant
embedding of (L) with respect to π. If µ �= 0 and bn = 0 for all 0 ≤ n < t, then
there exists exactly one β given by (41), where the coefficients of L(x) are given by
(44), such that (α, β) is a covariant embedding of (L) with respect to π. If µ �= 0
and there exists at least one bj �= 0 for 0 ≤ j < t, then there is no covariant
embedding (α, β) of (L) with respect to π.

Proof. Case 1: If a0 �= 1, then for each α satisfying (Co1) and (B2) there exists
exactly one β such that (α, β) is a solution of (Co2) and (B2), whence according
to Theorem 1 there exists a covariant embedding of (L).

Assume that α is a solution of (Co1) and (B2). For the case 2.1.1, which
was a(x) = 1 and µ = 0, the same method can be applied. In case 2.1.2 we
had assumed that a(x) = 1 and µ �= 0. If b(x) �= 0, then there is no covariant
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embedding, since we cannot find a family β such that (α, β) is a solution of (Co2)
and (B2). If b(x) = 0, then (L) becomes ϕ(x) = ϕ(x) which is satisfied by any
formal series. If there were a covariant embedding of (L), then for each s ∈ C and
for any ϕ(x) ∈ C [[x]] the equation

ϕ(x) = eµsϕ(x) +
L(x)(eµs − 1)

µ

is satisfied, since in this case α(s, x) = eµs and β(s, x) = µ−1L(x)(eµs − 1). If we
choose s0 ∈ C such that eµs0 �= 1, then this equation has a unique solution

ϕ(x) =
L(x)(eµs0 − 1)

(1 − eµs0)µ
= −L(x)

µ

which is a contradiction to the assumption that there is a covariant embedding
of (L).

Finally, in case 2.2 we assume that a(x) = 1 + atx
t + . . . , t ≥ 1 and at �= 0.

Case 2.2.1: If µ = 0, then there exists exactly one β such that (α, β) is a solution
of (Co2) and (B2), whence by Theorem 1, no matter whether (L) can be solved or
not, (L) has a covariant embedding with respect to π. In case 2.2.2 we assume
that µ �= 0. If b(x) satisfies the necessary condition bn = 0 for all 0 ≤ n < t for
finding a solution (α, β) of (Co2) and (B2), then β is uniquely determined and
the assertion follows from Theorem 1. If b(x) does not satisfy this condition, i.e.
if there exists a coefficient bj �= 0 for 0 ≤ j < t, then there is no solution (α, β) of
(Co2) and (B2), whence there is no covariant embedding of (L). �

5. Survey of results

In order to present all the covariant embeddings of (L) with respect to an analytic
iteration group π we add a detailed description of those covariant embeddings with
respect to iteration groups of second type which were already found in [3].

Theorem 19. Assume that π(s, x) = x + cksxk + . . . , with k ≥ 2 and ck �= 0, is
an analytic iteration group of p(x).

If the coefficient a0 of a(x) is different from 1, let α be a solution of (Co1) and
(B2) given by

α(s, x) = eµsP (s, x)
E(π(s, x))

E(x)
(45)

where µ is an arbitrary logarithm of a0, E(x) = 1+e1x+. . . a uniquely determined
series, and

P (s, x) :=
k−1∏
n=1

Pn,κn
(s, x) =

k−1∏
n=1

exp
(

κn

∫ s

0

π(σ, x)ndσ

)
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with uniquely determined κn ∈ C. Then there exists exactly one β given by

β(s, x) = eµsP (s, x)E(π(s, x))
[
F (x) − e−µs F (π(s, x))

P (s, x)

]
(46)

with F (x) ∈ C [[x]] such that (α, β) is a covariant embedding of (L) with respect
to π.

Assume that a0 = 1 and that α given by (45) with µ �= 0 is a solution of (Co1)
and (B2). If a(x) = 1 + an0x

n0 + . . . with n0 ≥ 1, an0 �= 0, and
[
n0 < k − 1 or[

n0 = k − 1 and ak−1 − nck �= 0 for all n ∈ N
]]

, then there exist solutions (α, β)
of (Co2) and (B2) if and only if bn = 0 for all 0 ≤ n < n0. If these conditions
are satisfied then β of the form (46) is uniquely determined by (B2) and (α, β) is
a covariant embedding of (L) with respect to π.

Assume that a0 = 1 and that α given by (45) with µ = 0 is a solution of (Co1)
and (B2). If a(x) = 1, let m0 = k, otherwise let m0 be the smallest element in
{n ∈ N | an �= 0}, and let n0 := min {m0, k}. There exists exactly one β of the
form

β(s, x) = P (s, x)E(π(s, x))
[
F (x) − F (π(s, x))

P (s, x)
+ Q(s, x)

]

where

Q(s, x) =
n0−1∑
n=0

∫ s

0

�nπ(σ, x)n

P (σ, x)E(π(σ, x))
dσ

with �n ∈ C such that (α, β) is a covariant embedding of (L) with respect to π.

Furthermore, we have shown in [3] that without loss of generality we may
consider analytic iteration groups of type 1 just of the special form (eλsx)s∈C (and
hence p(x) = ρx with ρ = eλ). However, according to Theorem 1.3 of [3] our
results are valid for any chosen iteration group (S−1(eλsS(x)))s∈C of type 1 with
S(x) = x + s2x

2 + . . . .
In Remark 5 we proofed: If p(x) = ρx + c2x

2 + . . . has several embed-
dings into analytic iteration groups with a fixed λ satisfying eλ = ρ, then (L)
has a covariant embedding with respect to a particular analytic iteration group
(S−1

0 (eλsS0(x)))s∈C if and only if it is embeddable with respect to any other ana-
lytic iteration group of p(x).

The existence or non-existence of a covariant embedding of (L) with respect
to an analytic iteration group π is now completely solved and described for all
the different kinds of analytic iteration groups. The theorems dealing with the
different situations are collected in the following table:
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Situation Solution
p(x) = x and π of type 1 Theorem 16
p(x) = x and π(s, x) = x Theorem 18
p(x) = eλx, λ �= 0, eλ a root of 1 Theorem 4
p(x) = eλx, eλ not a root of 1 Corollary 4.2 of [3], Theorem 8
π(s, x) = S−1(eλsS(x)), λ �= 0 Theorem 1.3 of [3]
p(x) = x + ckxk + . . . , a0 = 1 Corollary 4.2 of [3], Theorem 12,

Theorem 15, Theorem 19
p(x) = x + ckxk + . . . , a0 �= 1 Corollary 4.2 of [3], Theorem 19
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