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Abstract

It is demonstrated how classes of linear (n, k)-codes can be enumerated using
cycle index polynomials and other methods from algebraic combinatorics.

Some results of joined work [9] with Prof. Kerber from the University of Bayreuth

on the enumeration of linear codes over GF (q) are presented. Furthermore I will give
an introduction to enumeration under finite group actions.
At first let me draw your attention to the enumeration of linear codes. Let p be a prime
and let q be a power of p then GF (q) denotes the finite field of q elements. A linear
(n, k)-code over the Galois field GF (q) is a k-dimensional subspace of the vector space
GF (q)n. As usual codewords will be written as rows x = (x1, . . . , xn). A k × n-matrix
Γ over GF (q) is called a generator matrix of the linear (n, k)-code C, if and only if the
rows of Γ form a basis of C, so that C = {x · Γ | x ∈ GF (q)k}. The Hamming distance
d(x, y) := |{i ∈ n

xi 6= yi}| is a metric on GF (q)n. (The set of integers from 1 to n will
be indicated as n.) The minimal distance d(C) of a code C is given by

d(C) := min
(x,y)∈C2, x6=y

d(x, y).

It can be used to express the quality of a code. A maximum likelihood decoding algorithm
for instance corrects (d − 1)/2 errors and detects d − 1 errors, when d is the minimal
distance of the code.
In coding theory two linear (n, k)-codes C1, C2 are called equivalent , if and only if there
is an isometry (with respect to the Hamming metric) which maps C1 onto C2. This
means there is a linear isomorphism ϕ:C1 → C2 such that d(x, y) = d(ϕ(x), ϕ(y)) for
all x, y ∈ C1. It can be shown that such a linear isometry between two linear (n, k)-
codes can always be extended to an isometry of GF (q)n. (See [10].) Let’s investigate
the structure of the group of all linear isometries of GF (q)n. It is enough to consider
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an isometry ϕ acting on the standard basis {e1, . . . , en} where ei = (δi,j)j∈n. Since ϕ
is a homomorphism, ϕ(ei) =

∑n
j=1 αi,jej, where αi,j ∈ GF (q). Since ϕ is an isometry,

for each i there is exactly one j such that αi,j 6= 0. This defines a function π:n → n
such that αi,π(i) 6= 0 and ϕ(ei) = αi,π(i)eπ(i). Since ϕ is an isomorphism, π must be a
permutation, i.e. π ∈ Sn. Let’s define ψ(i) := αi,π(i), then ψ is a mapping from n to
GF (q)∗ (where GF (q)∗ denotes the multiplicative group of the Galois field), and ϕ can
be identified with the pair (ψ, π). Then the group of all isometries corresponds to the
wreath product

GF (q)∗ o Sn =
{

(ψ, π)
ψ ∈ GF (q)∗n, π ∈ Sn

}
,

which is the semidirect product of GF (q)∗n and Sn, where the multiplication is given by

(ψ, π)(ψ′, π′) = (ψψ′π, ππ
′),

where ψψ′π(i) = ψ(i)ψ′π(i) and ψ′π(i) = ψ′(π−1i). (From now on GF (q)n will be identified
with GF (q)n, the set of all mappings from n to GF (q).) The complete monomial group
GF (q)∗ o Sn of degree n over GF (q)∗ acts on GF (q)n in the form of the exponentiation,
i.e.

GF (q)∗ o Sn×GF (q)n → GF (q)n, ((ψ, π), (x1, . . . , xn)) 7→ (ψ(1)xπ−11, . . . , ψ(n)xπ−1n).

For computing the number of isometry classes of linear (n, k)-codes we use methods
from algebraic combinatorics, which shall be described now.
Let me start with the basic concept of a finite group action. (More details can be found
in [11].) Let G denote a multiplicative finite group and X a nonempty set. A finite
group action GX of G on X is described by a mapping

G×X → X, (g, x) 7→ gx,

such that g(g′x) = (gg′)x, and 1x = x. In other words, there is a group homomorphism
δ from G into the symmetric group SX on X (i.e. the set of all permutations of X)
which is called a permutation representation of G on X:

δ:G→ SX , g 7→ δ(g) =: ḡ, where ḡ(x) := gx.

A group action GX defines the following equivalence relation on X:

x ∼G x′ iff ∃g ∈ G: x′ = gx.

The equivalence classes are called orbits , and the orbit of x ∈ X will be indicated as

G(x) : = {gx
g ∈ G}.

The set of all orbits will be denoted by

G\\X := {G(x)
x ∈ X} .
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For each x ∈ X the stabilizer Gx of x

Gx : = {g
gx = x}

is a subgroup of G. The stabilizer of y = gx is given by Gy = gGxg
−1, so the stabilizers

of all elements in the orbit of x form the conjugacy class of the subgroup Gx of G. The
mapping G(x)→ G/Gx, gx 7→ gGx is a bijection. So we conclude that

|G(x)| = |G|/|Gx|.

Finally the set of all fixed points of g ∈ G is denoted by

Xg : = {x
gx = x}.

The main lemma in the theory of enumeration under finite group actions is the so called
Lemma of Cauchy Frobenius. It says that the number of orbits of a finite group G
acting on a finite set X is equal to the average number of fixed points:

|G\\X| = 1

|G|
∑
g∈G
|Xg|.

Proof: ∑
g∈G
|Xg| =

∑
g∈G

∑
x∈Xg

1 =
∑
x∈X

∑
g∈Gx

1 =
∑
x∈X
|Gx| =

∑
x∈X

|G|
|G(x)|

= |G|
∑

ω∈G\\X

∑
x∈ω

1

|G(x)|
= |G|

∑
ω∈G\\X

∑
x∈ω

1

|ω|
= |G|

∑
ω∈G\\X

1 = |G| |G\\X| .

Interesting examples for group actions can be found as actions on the set Y X of all
functions from X to Y , where the group action on Y X is induced from actions on X or
Y .

1. Let GX be a finite group action, then G acts on Y X by the definition

G× Y X → Y X , (g, f) 7→ f ◦ g−1, (1)

and the number of G-orbits on Y X is given by

∣∣∣G\\Y X
∣∣∣ =

1

|G|
∑
g∈G
|Y |c(ḡ) ,

where c(ḡ) is the number of cycles of the permutation ḡ = δ(g) ∈ SX .

Proof: A function f ∈ Y X is a fixed point of g, if and only if f(g−1x) = f(x) for
all x ∈ X, i.e. f is constant on each g-orbit (i.e. cycle of ḡ) on X, and c(ḡ) is the
number of all these cycles.
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2. Let HY be a finite group action, then H acts on Y X by the definition

H × Y X → Y X , (h, f) 7→ h ◦ f, (2)

and the number of H-orbits on Y X is given by

∣∣∣H\\Y X
∣∣∣ =

1

|H|
∑
h∈H
|Yh||X| .

3. Let GX and HY be finite group actions, then the direct product G × H acts on
Y X by the definition

(G×H)× Y X → Y X , ((g, h), f) 7→ h ◦ f ◦ g−1, (3)

and the number of G×H-orbits on Y X is given by

∣∣∣G×H\\Y X
∣∣∣ =

1

|G| |H|
∑

(g,h)∈G×H

|X|∏
i=1

|Yhi |ai(ḡ) ,

where (a1(ḡ), . . . , a|X|(ḡ)) the cycle type of the permutation ḡ ∈ SX is. (I.e. ḡ
decomposes into a product of ai(ḡ) pairwise disjoint cycles of length i for i =
1, . . . , |X|.) Furthermore there is a bijection

(G×H)\\Y X → G\\(H\\Y X), (G×H)(f) 7→ G(H(f)),

where G acts on H\\Y X by g(H(f)) := H(f ◦ g−1). This bijection is due to de

Bruijn.

4. Let GX and GY be finite group actions, then G acts on Y X by the definition

G× Y X → Y X , (g, f) 7→ g ◦ f ◦ g−1, (4)

and the number of G-orbits on Y X is given by

∣∣∣G\\Y X
∣∣∣ =

1

|G|
∑
g∈G

|X|∏
i=1

∣∣∣Ygi

∣∣∣ai(ḡ)
,

where ḡ is the permutation representation of G on X. The group actions mentioned
above can be considered as special cases of this group action. All the group actions
mentioned so far can be restricted to group actions on the sets of all injective,
surjective or bijective mappings from X to Y .

5. Let GX and HY be finite group actions, then the wreath product H oX G acts in
form of the exponentiation on Y X

(H oX G)× Y X → Y X , ((ψ, g), f) 7→ f̃ , (5)
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where f̃(x) = ψ(x)f(π−1x). There is a bijection due to Lehmann ([12, 13]) which
reduces the action of a wreath product to the action of the group G on the set of
all functions from X into the set of all orbits of H on Y :

Φ:H oX G\\Y X → G\\(H\\Y )X , (H oX G(f)) 7→ G(F ),

where F ∈ (H\\Y )X is given by F (x) = H(f(x)), and G acts on (H\\Y )X by
g(F ) := F ◦ g−1. So the number of H oX G-orbits on Y X is given by

∣∣∣(H oX G)\\Y X
∣∣∣ =

1

|G|
∑
g∈G
|H\\Y |c(ḡ) .

All the group actions above are special cases of this group action.

These enumeration methods can be generalized by introducing weights, which are con-
stant on each orbit. Let R be a commutative ring such that IQ is a subring of R and let
w:X → R be a weight function which is constant on each G-orbit, then the weight of
the orbit G(x) can be defined by W (G(x)) := w(x) and from the Cauchy Frobenius

Lemma we derive ∑
ω∈G\\X

W (ω) =
1

|G|
∑
g∈G

∑
x∈Xg

w(x).

Another concept is the enumeration of orbits of given stabilizer type. We have already
seen that the stabilizer type of an orbit G(x) is the conjugacy class of the stabilizer Gx.
Having detailed information on the subgroup lattice of the acting group it is possible to
determine the number of orbits of stabilizer type Ũ , where Ũ is the conjugacy class of
U ≤ G. In my PhD thesis [7] all the enumeration formulae are given for group actions
of the form 1,2,3 and 4 on Y X .
Finally let me introduce the cycle index of a finite group action. Let GX be a finite
group action, then the cycle index of G acting on X is the following polynomial in the
indeterminates x1, . . . , x|X| over IQ.

Z(G,X) :=
1

|G|
∑
g∈G

|X|∏
i=1

x
ai(ḡ)
i ,

where (a1(ḡ), . . . , a|X|(ḡ)) is the cycle type of the permutation ḡ ∈ SX . Most of the
enumerative formulae for group actions on Y X induced from actions on X or Y can be
expressed by using the cycle index notion. Let me just give two examples (see [4]):

1. Let HY be a finite group action, then Sn × H acts on Y n according to (3) and
H-orbits on Y n is given by

∞∑
n=0

∣∣∣(Sn ×H)\\Y n
∣∣∣xn = Z(H,Y )|xi=

∑∞
j=0

xij = Z(H,Y )|xi=
1

1−xi
. (6)
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2. The group action of above can be restricted to the set of all injective mappings
from n to Y . The corresponding generating function is

∞∑
n=0

∣∣∣(Sn ×H)\\Y n
inj

∣∣∣xn = Z(H,Y )|xi=1+xi , (7)

which is a polynomial.

Returning to the enumeration of linear codes, we translate the equivalence relation for
linear (n, k)-codes into an equivalence relation for generator matrices of linear codes,
and these generator matrices are considered to be functions Γ:n→ GF (q)k \ {0} where
Γ(i) is the i-th column of the generator matrix Γ. (We exclude 0-columns for obvious
reasons.)

Theorem 1: The matrices corresponding to the two functions Γ1 and Γ2 from n to
GF (q)k \ {0} are generator matrices of two equivalent codes, if and only if Γ1 and Γ2 lie
in the same orbit of the following action of GLk(q)×GF (q)∗ o Sn as permutation group
on (GF (q)k \ {0})n:

(A, (ψ, π))(Γ) = Aψ(·)Γ(π−1·),

or, more explicitly,
(A, (ψ, π))(Γ)(i) := Aψ(i)Γ(π−1(i)).

Following Slepian [15], we use the following notation:

Tnkq := the number of orbits of functions Γ:n → GF (q)k \ {0} under the group action

of Theorem 1, i.e. Tnkq =
∣∣∣(GLk(q)×GF (q)∗ o Sn)\\(GF (q)k \ {0})n

∣∣∣.
Snkq := the number of equivalence classes of linear (n, k)-codes over GF (q) with no

columns of zeros. (A linear (n, k)-code has columns of zeros, if and only if there
is some i ∈ n such that xi = 0 for all codewords x, and so we should exclude such
columns.)

The Snkq can be computed from the Tnkq by

Snkq = Tnkq − Tn,k−1,q. (8)

As initial values we have Sn1q = 1 for n ∈ IN. It is important to realize that

• Tnkq is the number of orbits of functions from n to GF (q)k \ {0} without any
restrictions on the rank of the induced matrix.

• All matrices which are induced from functions Γ of the same orbit have the same
rank.

• The number of orbits of functions Γ which induce matrices of rank less or equal
k − 1 is Tn,k−1,q.
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Applying Lehmann’s bijection for the action of the wreath product GF (q)∗ o Sn we
realize that Tnkq is the number of orbits under the following action of Sn × GLk(q) on
the set of all functions Γ̄ from n to GF (q)∗\\GF (q)k \ {0}:

(π,A)(Γ̄) = AΓ̄π−1,

where Γ ∈ (GF (q)k\{0})n defines Γ̄ by Γ̄(i) = GF (q)∗(Γ(i)) and Sn acts on the set of the

functions
(
GF (q)∗\\(GF (q)k \ {0})

)n
by π(Γ̄) = Γ̄ ◦ π−1. Furthermore GLk(q) acts on

GF (q)∗\\(GF (q)k \ {0}) by A(GF (q)∗(v)) = GF (q)∗(Av). The set of the GF (q)∗-orbits
GF (q)∗\\(GF (q)k \ {0}) is the (k − 1)-dimensional projective space

GF (q)∗\\GF (q)k \ {0} =: PGk−1(q)

and the representation of GLk(q) as a permutation group is the projective linear group
PGLk(q). This proves in fact the following to be true:

Theorem 2: The isometry classes of linear (n, k)-codes over GF (q) are the orbits of
GLk(q)× Sn on the set of mappings PGk−1(q)n. This set of orbits is equal to the set of
orbits of GLk(q) on the set Sn\\PGk−1(q)n, which can be represented by a complete set
of mappings of different content, if the content of f ∈ PGk−1(q)n is defined to be the
sequence of orders of inverse images |f−1(x)|.
Thus the set of isometry classes of linear (n, k)-codes over GF (q) is equal to the set of
orbits of GLk(q) on the set of mappings f ∈ PGk−1(q)n of different content that form
k × n-matrices of rank k.
The particular classes of elements with orders of inverse images |f−1(x)| ≤ 1 are the
classes consisting of Hamming codes.

Knowing the cycle index of PGLk(q) acting on PGk−1(q) equation (6) can be applied
for computing Tnkq. When restricting the group action of PGLk(q) × Sn to an action
on the set of all injective functions Γ̄:n → GF (q)∗\\(GF (q)k \ {0}) one can derive the
number of classes of injective codes , which are codes without proportional columns.
In [15] Slepian explained how the cycle index of GLk(2) can be computed using results
of Elspas [5]. In [6] the author generalized this concept for computing the cycle indices
of GLk(q) and PGLk(q) acting on GF (q)k or PGk−1(q) respectively. These cycle indices
are now available in the computer algebra package SYMMETRICA [16]. (See [8] for
more details on the implementation.) They were applied for computing the tables of
linear codes over GF (9), which can be found on the next pages.
In order to minimize the number of orbits that must be enumerated or represented,
and following Slepian again, we can restrict attention to indecomposable linear (n, k)-
codes. Let C1 be a linear (n1, k1)-code over GF (q) with generator matrix Γ1 and let C2

be a linear (n2, k2)-code over GF (q) with generator matrix Γ2, then the code C with
generator matrix

Γ :=

(
Γ1 0
0 Γ2

)
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Table 1: Isometry classes of linear (n, k)-codes over GF (9)

n\k 1 2 3 4

1 1 0 0 0
2 1 1 0 0
3 1 2 1 0
4 1 5 3 1
5 1 8 12 4
6 1 17 62 28
7 1 27 430 475
8 1 54 4150 28856
9 1 91 42401 2.417364

10 1 168 413259 197.609449
11 1 275 3.762158 14874.498092
12 1 477 31.881605 1.029632.967128
13 1 764 252.307220 65.891528.575554
14 1 1247 1873.439094 3920.491447.510867
15 1 1937 13111.695528 217978.744960.455289

is called the direct sum of the codes C1 and C2, and it will be denoted by C = C1⊕C2. A
code C is called decomposable, if and only if it is equivalent to a code which is the direct
sum of two or more linear codes. Otherwise it is called indecomposable. The number of
all indecomposable linear (n, k)-codes over GF (q) will be denoted by Rnkq.
In [15] Slepian proves that every decomposable linear (n, k)-code is equivalent to a
direct sum of indecomposable codes, and that this decomposition is unique up to equiv-
alence and order of the summands. Slepian used a generating function scheme for
computing the numbers Rnk2. However after constructing these codes the author real-
ized that in some situations this formula doesn’t work correctly. For that reason we are
giving another formula to determine Rnkq. For the rest of this article let n ≥ 2.

Theorem 3: The number Rnkq is equal to

Snkq −
∑
a

∑
b

n−1∏
j=1

aj 6=0


∑

c=(c1,...,caj )∈IN
aj

j≥c1≥...≥caj≥1,
∑

ci=bj

U(j, a, c)

 ,

where

U(j, a, c) =
j∏
i=1

Z(Sν(i,aj ,c), ν(i, aj, c))|x`=Rjiq
, ν(i, aj, c) = |{1 ≤ l ≤ aj | cl = i}| ,
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Table 2: Isometry classes of injective linear (n, k)-codes over GF (9)

n\k 1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 2 2 1
5 0 2 7 3
6 0 2 38 21
7 0 1 250 409
8 0 1 2178 26436
9 0 1 19067 2.206042

10 0 1 153106 176.938649
11 0 0 1119490 13005.200885
12 0 0 7.444639 876508.494146
13 0 0 45.193018 54.475570.780948
14 0 0 251.681833 3140.099483.972559
15 0 0 1291.732944 168727.736939.110698

and where the first sum is taken over the cycle types a = (a1, . . . , an−1) of n, (which
means that ai ∈ IN0 and

∑
iai = n) such that

∑
ai ≤ k, while the second sum is over

the (n − 1)-tuples b = (b1, . . . , bn−1) ∈ INn−1
0 , for which ai ≤ bi ≤ iai, and

∑
bi = k.

The numerical results show that for fixed q and n the sequence of Rnkq is unimodal and
symmetric. (It is easy to prove that this sequence must be symmetric, but the proof of
the unimodality is still open.)

The numbers of classes of indecomposable linear codes over GF (9) are given in the next
two tables.
Using double coset methods and the combinatorial method of orderly generation [14, 3]
we got a complete overview of indecomposable linear (n, k)-codes over GF (q) for quite
a number of parameter triples (n, k, q) by constructing lists of representatives of the
isometry classes of indecomposable linear codes. (See for instance [1, 2, 17].)
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Table 3: Isometry classes of indecomposable linear (n, k)-codes over GF (9)

n\k 1 2 3 4

1 1 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 3 1 0
5 1 6 6 1
6 1 14 49 14
7 1 24 402 402
8 1 50 4097 28353
9 1 87 42296 2412712

10 1 163 413066 197.562376
11 1 270 3.761800 14874.037714
12 1 471 31.880975 1.029628.744436
13 1 758 252.306117 65.891492.470922
14 1 1240 1873.437231 3920.491159.098191
15 1 1930 13111.692422 217978.742798.601836

Table 4: Isometry classes of indecomposable injective linear (n, k)-codes over GF (9)

n\k 1 2 3 4

1 1 0 0 0
2 0 0 0 0
3 0 1 0 0
4 0 2 1 0
5 0 2 5 1
6 0 2 36 13
7 0 1 248 369
8 0 1 2177 26181
9 0 1 19066 2203858

10 0 1 153105 176.919574
11 0 0 1119489 13005.047772
12 0 0 7.444639 876507.374648
13 0 0 45.193018 54.475563.336302
14 0 0 251.681833 3140.099438.779534
15 0 0 1291.732944 168727.736687.428860
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