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Abstract. Investigating the associativity equation for formal power series in
two variables we show that the transcendental associative formal power series

are of order one or two and that they can be represented by an invertible formal

power series in one variable. We also discuss the convergence of associative
formal power series.

1. Introduction

The notion of associativity of a function F : D × D → D (or an operation ◦
on the set D such that x ◦ y = F (x, y)) means in the formulation as a functional
equation

F (F (x, y), z) = F (x, F (y, z))

for all x, y, z ∈ D. This functional equation has been studied for various sets D and
under different regularity conditions on F , see [1]. In the present paper we consider
the associativity equation for indeterminates X,Y and Z

(AE) F (F (X,Y ), Z) = F (X,F (Y,Z))

for a formal power series F (X,Y ) in two indeterminates X and Y over a commu-
tative field K. A formal power series F in two variables is called associative if F
fulfills the associativity equation

(AE) F (F (X,Y ), Z) = F (X,F (Y, Z)).

By K[[X,Y ]] =
{
F : F (X,Y ) =

∑
p,q≥0 ap,qX

pY q
}

we denote the ring of formal
power series in two indeterminates. For a detailed description of formal power
series rings we refer the reader to [2]. For a series F ∈ K[[X,Y ]], F 6= 0, the order
of F is defined by ord F = n where n ∈ N ∪ {0} is the smallest number such that∑
p+q=n ap,qX

pY q 6= 0, and ord F = ∞ if F = 0. In order to make unrestricted
substitution possible, the order of any associative formal power series F has to be
greater than zero, hence the absolute term a0,0 of every associative formal power
series is zero.

Solutions F of the classical problem of associativity of the form F (X,Y ) = X +
Y + . . . ∈ K[[X,Y ]] are called formal group laws, see [5]. If K has characteristic 0,
then the general solution is given by F (X,Y ) = f−1(f(X) + f(Y )) for f ∈ K[[X]],
see [5] pp 30.
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Recently the polynomial case was investigated, some years ago also the rational
situation was considered. The article [6] provides a complete characterization of
all associative polynomials in two or more variables, for the special case of three
variables we refer the reader to [4]. The associative rational functions are decribed
in [3].

In this paper we regard formal power series F in two indeterminates for which
F (X,Y ) 6= X + Y + . . .. Therefore, we start with an example demonstrating that
there exist associative formal power series which are not decribed in [5]. Then
we show that all transcendental associative formal power series F with order 1
are given by F (X,Y ) = X + Y + . . . and that all other associative formal power
series F which are not polynomials are of order 2, they have to be of the form
F (X,Y ) = a1,1XY + . . ., a1,1 6= 0, a2,0 = a0,2 = 0. For the series with order 2 we
prove a Representation Theorem, namely Theorem 4.3, and we discuss the question
of convergence of these series.

2. An example

Associative formal power series F in two indeterminates with linear part X + Y
are well described and there are many examples of them, see [5]. Therefore it is
natural to ask wether there are any associative formal power series F with ord F ≥
2. We start with the following example which provides us with a whole class of
examples.

Example. Let f(X) = c(X + X2 + . . .) = cX ·
∑
n=0X

n where c 6= 0. Then f is
invertible. We define F (X,Y ) := f−1(f(X)f(Y )) and we obtain

F (F (X,Y ), Z) = F (f−1(f(X)f(Y )), Z)

= f−1(f(f−1(f(X)f(Y )))f(Z))

= f−1(f(X)f(Y )f(Z))

= f−1(f(X)(f(f−1(f(Y )f(Z))))

= F (X, f−1(f(Y )f(Z))))

= F (X,F (Y,Z)).

Hence this F is an associative formal power series. Explicitly we have

f(X) =
cX

1−X
, f−1(X) =

X

c+X

and

F (X,Y ) =
cXY

1−X − Y + (1 + c)XY

or

F (X,Y ) = cXY + cX2Y + cX3Y + cXY 2 + (c− c2)X2Y 2 + (c− 2c2)X3Y 2

+ cXY 3 + (c− 2c2)X2Y 3 + (c− 4c2 + c3)X3Y 3 + . . . .

Thus we know that we are not talking about an empty set when we are investi-
gating the non-classical case of formal group laws or polynomials.
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3. The structure of associative formal power series in two
indeterminates

This section is devoted to the question of the order of an associative formal power
series F . After showing that the order of F has to be 1 or 2, we give some conditions
on the coefficients of the possible associative formal power series. Let us mention
once more that we are not interesed in the case where F (X,Y ) = X + Y + . . .,
which is the classical formal group approach. We start with the first observations.

Remark 3.1. Let F (X,Y ) = a1,1XY +F3(X,Y )+ . . ., with a1,1 6= 0 and F (X,Y ) 6=
a1,1XY , be an associative power series. Then F is not a polynomial (i.e. there are
infinitely many k ≥ 2 such that Fk 6= 0).

Proof. From [6] we know that each associative polynomial P (X,Y ) = a1,1XY +
. . .+ Fm(X,Y ), a1,1 6= 0, m ≥ 3, in two variables with P (0, 0) = 0 is

P (X,Y ) = a1,1XY.

�

Lemma 3.2. Let F ∈ K[[X,Y ]], F (X,Y ) = a1,0X + a0,1Y + a2,0X
2 + a1,1XY +

a0,2Y
2 + . . ., be an associative formal power series. Then a1,0, a0,1 ∈ {0, 1}.

Proof. To prove this, we compute the first terms of the associative equation (AE).
We obtain

a1,0(a1,0X + a0,1Y + . . .) + a0,1Z + . . . = a1,0X + a0,1(a1,0Y + a0,1Z + . . .) + . . . .

Comparing the coefficients of X and Z in this equation results in a2
1,0 = a1,0 and

a2
0,1 = a0,1. Hence the claim follows. �

In [5] the case where F (X,Y ) = X +Y + . . ., F associative, is described. In this
article we focus on the situation where the first coefficients a1,0 and a0,1 are not
both one. In the next proposition we characterize those associative formal power
series where only one of the starting coefficients a1,0 or a0,1 is different from zero.

Proposition 3.3. Let F ∈ K[[X,Y ]], F (X,Y ) =
∑
p,q≥0 ap,qX

pY q, a0,0 = a1,0 = 0,

a0,1 = 1, be an associative formal power series. Then F (X,Y ) = Y .

Proof. We claim that F (X,Y ) = Y . Conversely, assuming that

F (X,Y ) = Y +
∑
k≥m

Fk(X,Y )

with Fm(X,Y ) 6= 0, m ≥ 2, Fk(X,Y ) is the homogeneous part of F of degree k,
we prove that Fm(X,Y ) = 0, what is a contradiction. The left hand side of (AE)
is computed as

F (F (X,Y ), Z) = Z +
∑
k≥m

Fk(F (X,Y ), Z)

= Z + Fm(Y +
∑
k≥m

Fk(X,Y ), Z) +
∑
k>m

Fk(F (X,Y ), Z)

= Z +
∑

p+q=m

ap,q

(
Y +

∑
k≥m

Fk(X,Y )
)p
Zq +

∑
k>m

Fk(F (X,Y ), Z)

= Z + Fm(Y, Z) + Φ(X,Y, Z),
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where ord Φ(X,Y, Z) > m. The right hand side of (AE) is

F (X,F (Y,Z)) = F (Y, Z) +
∑
k≥m

Fk(X,F (Y, Z))

= Z +
∑
k≥m

Fk(Y,Z) + Fm(X,Z +
∑
k≥m

Fk(Y,Z))

+
∑
k>m

Fk(X,F (Y,Z))

= Z + Fm(Y, Z) + Fm(X,Z) + Ψ(X,Y, Z),

where ord Ψ(X,Y, Z) > m. Therefore, we obtain Fm(X,Z) = 0. �

Remark 3.4. If F ∈ K[[X,Y ]] is associative, then F ? defined by F ?(X,Y ) :=
F (Y,X) is also associative, since

F ?(F ?(X,Y ), Z) = F (Z,F (Y,X)) = F (F (Z, Y ), X) = F ?(X,F ?(Y, Z)).

Thus by Proposition 3.3 any associative F ∈ K[[X,Y ]] of the form F (X,Y ) =
X + a1,1XY + a2,0X

2 + a0,2Y
2 + . . . satisfies F (X,Y ) = X.

Therefore, the formal power series we are interested in have order 2 or greater.
Now we prove that associative formal power series with a1,1 = 0 are equal to zero.

Theorem 3.5. Let F ∈ K[[X,Y ]], F (X,Y ) = a2,0X
2+a0,2Y

2+a3,0X
3+a2,1X

2Y +
a1,2XY

2 + a0,3Y
3 + F4(X,Y ) + . . . be an associative formal power series. Then

F = 0.

Proof. We want to prove this theorem in several steps.
Step 1. First we show that an,0 = a0,n = 0 for every n ∈ N.
For n = 1 there are no coefficients and hence the claim is fulfilled. For n = 2 we
write

F (X,Y ) = a2,0X
2 + a0,2Y

2 +
∑
l≥3

Fl(X,Y ).

The left hand side of the associativity equation (AE) results in

F (F (X,Y ), Z) = a2,0(a2,0X
2 + a0,2Y

2 +
∑
l≥3

Fl(X,Y ))

+ a0,2Z
2 +

∑
l≥3

Fl(F (X,Y ), Z).

The right hand side computes as

F (X,F (Y, Z)) = a2,0X
2 + a0,2(a2,0Y

2 + a0,2Z
2 +

∑
l≥3

Fl(Y, Z))

+
∑
l≥3

Fl(X,F (Y,Z)).

Hence we obtain a0,2Z
2 = 0 and a2,0X

2 = 0, therefore, a0,2 = a2,0 = 0. Let n > 2
and let the induction hypothesis be fulfilled for 1 ≤ j < n. We write

F (X,Y ) =

n−1∑
l=3

(
l−1∑
i=1

ai,l−iX
iY l−i

)
+

n∑
i=0

ai,n−iX
iY n−i +

∑
l≥n

Fl(X,Y ).
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Again we compute both sides of (AE) and we obtain

F (F (X,Y ), Z) =

n−1∑
l=3

(
l−1∑
i=1

ai,l−iF (X,Y )iY l−i

)
+ a0,nZ

n + an,0F (X,Y )n

+
∑
l≥n

Fl(F (X,Y ), Z)

= a0,nZ
n + . . .

and

F (X,F (Y, Z)) =

n−1∑
l=3

(
l−1∑
i=1

ai,l−iX
iF (Y, Z)l−i

)
+ a0,nF (Y,Z)n + an,0X

n

+
∑
l≥n

Fl(X,F (Y,Z))

= an,0X
n + . . . .

Here Xn does not appear in F (F (X,Y ), Z) as well as Zn does not appear in
F (X,F (Y, Z)). Hence we get a0,n = an,0 = 0.
Step 2. In order to show that a1,n = an,1 = 0 for all n ∈ N we write

F (X,Y ) = Xϕ1(Y ) +X2F̃ (X,Y )

where ϕ1(Y ) =
∑
n≥2 a1,nY

n. We have to show that ϕ1 = 0. Therefore

F (F (X,Y ), Z) = F (X,Y )ϕ1(Z) + F (X,Y )2F̃ (F (X,Y ), Z)

= (Xϕ1(Y ) +X2F̃ (X,Y ))ϕ1(Z) + F (X,Y )2F̃ (F (X,Y ), Z)

= Xϕ1(Y )ϕ1(Z) +X2Φ(X,Y, Z),

as well as

F (X,F (Y,Z)) = Xϕ1(F (Y,Z)) +X2F̃ (X,F (Y,Z))

= Xϕ1(Y ϕ1(Z) + Y 2F̃ (Y,Z)) +X2F̃ (X,F (Y,Z)).

Hence we have

ϕ1(Y )ϕ1(Z) = ϕ1(Y ϕ1(Z) + Y 2F̃ (Y,Z)).

Assume that ϕ1 6= 0, then let n1 = ord ϕ1 ≥ 2. We have

ϕ1(Y )ϕ1(Z) =
∑
n≥n1

a1,nY
n
∑
n≥n1

a1,nZ
n = a2

1,n1
Y n1Zn1 + . . .

and

ϕ1(Y ϕ1(Z) + Y 2F̃ (Y,Z)) = a1,n1(Y ϕ1(Z) + Y 2F̃ (Y,Z))n1

+
∑
n>n1

a1,n(Y ϕ1(Z) + Y 2F̃ (Y, Z))n

= a1,n1
(Y n1ϕ1(Z)n1 + . . .)

+
∑
n>n1

a1,n(Y ϕ1(Z) + Y 2F̃ (Y, Z))n

= a1,n1
(Y n1ϕ1(Z)n1 + . . .) + . . .

with

ϕ1(Z)n1 = (a1,n1
Zn1 + . . .)n1 = an1

1,n1
Zn1

2

+ . . . .
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It follows that n2
1 > n1 since n1 ≥ 2, therefore there is no term of the form Y n1Zn1

in ϕ1(Y ϕ1(Z) + Y 2F̃ (Y,Z)) and hence a1,n1
= 0 which is a contradiction. So

we obtain that a1,n = 0 for all n ∈ N. The same argument where X and Y are
interchanged shows that an,1 = 0 for all n ∈ N.
Step 3. In this step we are using an idea of [6]. Let i = ordXF when F is
considered as a formal power series in K[[Y ]][[X]]. Assume that F (0, Y ) 6= 0, i.e.
ordXF 6= ∞. Then ordXF (F (X,Y ), Z) = i2 and ordXF (X,F (Y,Z)) = i. Thus
i2 = i and i ∈ {0, 1} if F is associative. Therefore, all possible cases have been
considered. �

From now on we are interested in associative formal power series F

F (X,Y ) =
∑
i+j=n
n≥2

ai,jX
iY j ,

where a1,1 6= 0. We have the following lemma.

Lemma 3.6. Let F ∈ K[[X,Y ]], F (X,Y ) = a2,0X
2 + a1,1XY + a0,2Y

2 + . . .,
a1,1 6= 0, be an associative formal power series. Then ak,0 = a0,k = 0 for all k ∈ N,
k ≥ 2.

Proof. We want to compare the coefficients of X2 and Z2 of the left- and right hand
side of the associativity equation (AE). For the left hand side we obtain 0 · X2,
whereas the right hand side is given by a2,0X

2, hence a2,0 = 0. Analogously we
obtain, after comparing the coefficients of Z2 that a0,2 = 0. Let us now assume
that ak,0 = a0,k = 0 for 1 ≤ k ≤ n. By (AE) we get 0 ·Xn+1 = an+1,0X

n+1 and
therefore an+1,0 = 0. Analogously a0,n+1 = 0. �

Remark 3.7. From the previous lemma it follows that an associative formal power
series F (X,Y ) = a1,1XY + . . ., a1,1 6= 0 fulfills F (X, 0) = F (0, Y ) = 0.

Remark 3.8. Assume that F (X,Y ) =
∑
k,`≥1 ak,`X

kY ` is an associative formal
series. Then

F (F (X,Y ), Z) =
∑
k,`≥1

ak,`F (X,Y )kZ`.

We expand F (X,Y )k as
∑
i,j≥1A

(k)
i,j X

iY j . Given i, j ≥ 1, we study for which k

the coefficient A
(k)
i,j is not necessarily equal to 0.

Since for all monomials ar,sX
rY s of F the minimum of r and s is greater or

equal to 1, the exponent k must satisfy 1 ≤ k ≤ min{i, j}. For 1 ≤ k ≤ min{i, j}
the coefficient A

(k)
i,j is computed as

∑
(i1,...,ik)
(j1,...,jk)∑
ν iν=i∑
ν jν=j

k∏
ν=1

aiν ,jν ,

where iν and jν are positive integers for 1 ≤ ν ≤ k. In the sequel we will denote

this sum as
∑k

(iν),(jν).

If k > 1, then for all sequences occurring in
∑k

(iν),(jν) we have iν < i and jν < j

for all ν.
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By comparison of coefficients of XiY jZ`, the associativity equation yields for
each triple (i, j, `) of positive integers a polynomial relation of the form

(3.1)

min{i,j}∑
k=1

ak,`
∑

(iν),(jν)

k
k∏
ν=1

aiν ,jν =

min{j,`}∑
k=1

ai,k
∑

(jν),(`ν)

k
k∏
ν=1

ajν ,`ν .

If ` = 1, we obtain

min{i,j}∑
k=1

ak,1
∑

(iν),(jν)

k
k∏
ν=1

aiν ,jν = ai,1aj,1,

from which we deduce if a1,1 6= 0 that

(3.2) ai,j =
1

a1,1

ai,1aj,1 − min{i,j}∑
k=2

ak,1
∑

(iν),(jν)

k
k∏
ν=1

aiν ,jν

 , i, j ≥ 1.

Similarly, if i = 1 and a1,1 6= 0 we obtain

(3.3) aj,` =
1

a1,1

a1,ja1,` −
min{j,`}∑
k=2

a1,k

∑
(jν),(`ν)

k
k∏
ν=1

ajν ,`ν

 , j, ` ≥ 1.

Remark 3.9. Assume that F (X,Y ) =
∑
i,j≥1 ai,jX

iY j is an associative formal

series with a1,1 6= 0. Then the coefficients ai,j with min{i, j} > 1 are uniquely
determined by the coefficients an,1 (respectively a1,n) for n ≥ 1.

Proof. Let i = 2 and j ≥ 2, then ai,j can be expressed as in (3.2). All coefficients
ar,s on the right hand side of (3.2) satisfy min{r, s} = 1.

Assume that i > 2 and for all r < i and s ≥ 1 the coefficients ar,s are uniquely
determined by the coefficients an,1, n ≥ 1. Then in the representation (3.2) of ai,j
all indices iν are smaller than i, whence all the coefficients on the right hand side
of (3.2) are uniquely determined by the coefficients an,1, n ≥ 1. Therefore also ai,j
is uniquely determined by the coefficients an,1, n ≥ 1. Using (3.3) we prove in a
similar way that ai,j is uniquely determined by the coefficients a1,n, n ≥ 1. �

In the next proposition we show that an associative formal power series is com-
mutative. An analougue result for the case where the formal power series is given
by F (X,Y ) = X + Y + . . . can be found in [5] page 38.

Proposition 3.10. Let F ∈ K[[X,Y ]], F (X,Y ) = a1,1XY + . . ., a1,1 6= 0, be an
associative formal power series. Then

(3.4) ai,j = aj,i

for all i, j ∈ N and hence

F (X,Y ) = F (Y,X).

Proof. Step 1. We start by comparing the coefficients of XY jZ for an arbitrary
j ∈ N. Therefore we obtain from (3.1) the relation

a1,1a1,j = a1,1aj,1

and hence a1,j = aj,1 because a1,1 6= 0.
Step 2. Assume that i ≥ 2, and a`,k = ak,` for all 1 ≤ ` < i and for all k ≥ 1. We
prove by induction that ai,j = aj,i for all j ≥ 1.
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For j < i by assumption ai,j = aj,i. For i = j there is nothing to prove. Assume
that j > i. Then according to (3.2)

ai,j =
1

a1,1

ai,1aj,1 − i∑
k=2

ak,1
∑

(iν),(jν)

k
k∏
ν=1

aiν ,jν

 .

On the right hand side k is greater than 1, whence, all iν occurring in
∑k

(iν),(jν)

satisfy iν < i. Thus min{r, s} < i for all coefficients ar,s occurring on the right
hand side, and by the induction hypothesis they all satisfy ar,s = as,r.

From (3.3) we obtain

aj,i =
1

a1,1

a1,ja1,i −
i∑

k=2

a1,k

∑
(jν),(iν)

k
k∏
ν=1

ajν ,iν

 .

This expression can be obtained from the expression for ai,j above by interchanging
the two indices of all the involved coefficients ar,s. Therefore, ai,j = aj,i. �

Remark 3.11. In certain situations it is even possible to find simpler relations
between the coefficients ai,j and aj,i of a formal series F satisfying the assump-
tions of Proposition 3.10. E.g. comparing the coefficients of X2Y 3Z2, we get
a1,2a2,3 + 2a1,1a1,2a2,2 = 2a1,1a2,1a2,2 + a2,1a3,2, and since a1,2 = a2,1 we have
a1,2a2,3 = a2,1a3,2. If a1,2 6= 0, then we obtain a2,3 = a3,2.

4. The representation of associative formal power series of order
greater than one

Remark 4.1. Assume that F (X,Y ) =
∑
k,`≥1 ak,`X

kY ` is an associative formal
series with a1,1 6= 0. Then F is commutative so that the comparison of coefficients
of XiY jZ` and X`Y jZi yields the same polynomial relation. Thus it is enough to
consider (3.1) only for ` ≤ i.

Lemma 4.2. Let f(X) =
∑
n≥1 fnX

n, f1 6= 0, be an invertible formal power

series. Then F (X,Y ) = f−1(f(X)f(Y )) is an associative formal power series. If
we write F (X,Y ) =

∑
k,`≥1 ak,`X

kY `, then a1,n = fn = an,1, n ≥ 1.

Proof. Using the method shown in the Example of section 2 we see that F (X,Y ) =
f−1(f(X)f(Y )) is an associative formal power series of the form

∑
k,`≥1 ak,`X

kY `.

Thus f(F (X,Y )) = f(X)f(Y ), which means that∑
ν≥1

fν

(∑
k,`≥1

ak,`X
kY `

)ν
=
∑
n,m≥1

fnfmX
nY m.

We compare the coefficients of X1Y n or XnY 1. On the left hand side only the
summand for ν = 1 is possible, since otherwise the exponent 1 of X respectively Y
cannot occur. Thus we get

f1a1,n = f1fn respectively f1an,1 = fnf1, n ≥ 1,

which yields the assertion by cancelling f1. �

Now we can prove the Representation Theorem.
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Theorem 4.3 (Representation Theorem). (1) The formal power series F ∈
K[[X,Y ]], F (X,Y ) = a1,1XY + . . ., a1,1 6= 0, is associative if and only if
there exists an invertible formal power series f ∈ K[[X]] such that

(4.1) F (X,Y ) = f−1(f(X)f(Y )).

(2) If F (X,Y ) = a1,1XY + . . ., a1,1 6= 0 is associative, then f fulfilling (4.1) is
uniquely determined.

Proof. Let F (X,Y ) =
∑
k,`≥1 ak,`X

kY ` be an associative formal power series and

let f(X) =
∑
n≥1 an,1X

n. Then f is invertible and by Lemma 4.2 the series

Φ(X,Y ) = f−1(f(X)f(Y )) =
∑
k,`≥1 bk,`X

kY ` is associative with bn,1 = fn =

an,1, n ≥ 1. By Remark 3.9 the coefficients ai,j , min{i, j} > 1, of an associative
series are uniquely determined by an,1, n ≥ 1, whence Φ = F . �

In this proof we did not use the commutativity of F . Actually it follows imme-
diately from the Representation Theorem since

F (X,Y ) = f−1(f(X)f(Y )) = f−1(f(Y )f(X)) = F (Y,X).

Another proof of Theorem 4.3 is the following. 1. Let f ∈ K[[X]] be invertible. Ac-
cording to Lemma 4.2 the function F represented by F (X,Y ) = f−1(f(X)f(Y )) is
associative.
Let F be associative and let f(X) =

∑
n≥1 an,1X

n, then f is an invertible power

series. We want to prove that f(F (X,Y )) = f(X)f(Y ). We have

F (F (X,Y ), Z) =
∑
r,s≥1

ar,sF (X,Y )rZs

=
∑
r≥1

ar,1F (X,Y )rZ︸ ︷︷ ︸
=Φ(X,Y,Z)

+
∑

r≥1, s≥2

ar,sF (X,Y )rZs.

The series Φ(X,Y, Z) consists of all monomials in F (F (X,Y ), Z) so that the ex-
ponent of Z is 1. Next we compute the subseries Ψ(X,Y, Z) of F (X,F (Y,Z))
consisting of all monomials of the form XiY jZ for some i, j ≥ 1. We get

Ψ(X,Y, Z) =
∑
i≥1

ai,1X
i
∑
j≥1

aj,1Y
jZ.

Since F is associative Φ(X,Y, Z) = Ψ(X,Y, Z). It is obvious that Φ(X,Y, Z) =
f(F (X,Y ))Z and Ψ(X,Y, Z) = f(X)f(Y )Z which finishes the proof of the first
assertion.
2. The second assertion follows from Remark 3.9. �

Remark 4.4. (1) Let (cn)n≥1 be a sequence in K with c1 6= 0. Then there exists
exactly one associative formal series F (X,Y ) =

∑
i,j≥1 ai,jX

iY j where

a1,n = cn = an,1 for all n ≥ 1. If min{i, j} > 1, then the coefficients ai,j
are given by (3.2).

(2) Let F (X,Y ) =
∑
i,j≥1 ai,jX

iY j be a commutative formal series. The fol-
lowing assertions are equivalent:
(a) F is associative.
(b) For all triples (i, j, `) of positive integers with i, j ≥ 2 and ` ≤ i the

condition (3.1) is satisfied.
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(c) For all triples (i, j, 1) of positive integers with i, j ≥ 2 the condition
(3.1) is satisfied.

Remark 4.5. Let F ∈ K[[X,Y ]], F (X,Y ) = a1,1XY + . . ., a1,1 6= 0. Then
F is associative if and only if for every π ∈ S3

(4.2) F (F (X1, X2), X3) = F (Xπ(1), F (Xπ(2), Xπ(3))).

Proof. Let F be associative. Then F is commutative and together with associativity
F fulfills (4.2) for all permutations π ∈ S3.
Let F fulfill (4.2) for all π ∈ S3. Then using π = id the formal power series F is
associative. �

For K ∈ {R,C} one may ask for the characterization of those associative series
F (X,Y ) = cXY + . . . which are convergent.

Theorem 4.6. Let F (X,Y ) = f−1(f(X)f(Y )). Then F is convergent if and only
if f is convergent.

Proof. Let f(X) = cX + . . ., c 6= 0, be convergent. Then f−1 is also convergent
and thus also f−1(f(X)f(Y )).
If, on the other hand, F (X,Y ) = a1,1XY +

∑
p+q≥3 ap,qX

pY q is convergent, we

know that f(X) = a1,1X +
∑
p≥2 ap,1X

p. But
∑
p≥2 ap,1X

p is a convergent sub-

series of F , thus
∑
p≥2 ap,1X

py0 converges for some fixed y0 and all |X| < δ for
some δ > 0. Accordingly

f(X) =
1

Y0

∑
p≥2

ap,1X
py0

is convergent. �
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