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1. Introduction

The methods and results presented in this paper are interesting in the framework
of classification of discrete structures [12, 13]. Very often discrete structures can
be described as equivalence classes of certain objects. If these equivalence classes
can be expressed as orbits under a group G acting on a set X — i. e. there is a
mapping G × X → X, (g, x) 7→ gx such that g1(g2x) = (g1g2)x and 1x = x —
then there exist some combinatorial and algebraic methods for the classification of
these structures. For instance each element in the discrete structure of unlabelled
graphs can be considered as the set of all possible labellings of a given graph which
is the orbit of a labelled graph under the action of the symmetric group; or the
isometry classes of block-codes are orbits of special wreath-products as we will see
below. In a first step one can enumerate these structures by applying the Cauchy-
Frobenius-Lemma, which says that the number of G-orbits is the average number
of fixed points

1
|G|

∑
g∈G
|Xg| , Xg := {x ∈ X | gx = x} .

In a second step certain properties of these structures can be described by weight
functions or by their stabilizer (the stabilizer of x ∈ X is the subgroup Gx :=
{g ∈ G | gx = x} of G) and the numbers of structures with these additional prop-
erties can be computed by the Redfield-Pólya-de Bruijn-Theory or by Burnsides
Lemma. The more details of a structure are specified and prescribed by parame-
ters the closer comes the enumeration procedure to the construction of all structures
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with given properties. The most ambitious task of course is the computation of com-
plete lists of representatives of a discrete structure, which can be done by carefully
arranging both algebraic and combinatorial algorithms. Having computed lists of
representatives we can investigate each member of a list for its properties. When
the numbers of representatives get too large in order to compute complete lists, it
is useful, helpful and makes sense to compute representatives uniformly at random.
This way we can produce unprejudiced lists of representatives which can be used
to check hypotheses on them and afterwards we can try to prove the valid ones.

Let A be a finite alphabet, then an [n,m] block code C over A is an m-subset
of An. In order to describe the isometry classes of block codes we need the no-
tion of wreath products. The wreath product SA o Sn is a group formed by a set{

(ψ, π)
ψ ∈ SAn, π ∈ Sn} with multiplication (ψ, π)(ψ′, π′) = (ψψ′π, ππ

′), where
ψψ′π(i) := ψ(i)ψ′π(i) and ψ′π(i) := ψ′(π−1i). (For more details on group actions
and wreath products cf. [11].)

Two [n,m] codes C1 and C2 will be called equivalent , if and only if there is some
(ψ, π) in the full monomial group SA o Sn such that

C1 = (ψ, π)(C2) :=
{

(ψ, π)f
f ∈ C2

}
,

where (ψ, π)f(i) = ψ(i)f(π−1i). (I. e. SA o Sn acts in form of the exponentiation
on An which induces an action on the set of all subsets of An.) The equivalence
classes under this group action are exactly the isometry classes of [n,m] codes.

In previous papers [4, 5, 6, 3] we were dealing with the enumeration of isometry
classes of linear (n, k) codes over a finite field GF (q). In this situation we had to
determine the number of isometry classes of k-dimensional subspaces of GF (q)n,
which can be described as orbits under the action of GF (q)∗ o Sn. Of course, each
linear (n, k)-code over GF (q) is an [n, qk] block code.

2. Enumeration of block codes

Usually when enumerating or constructing under the action in form of the expo-
nentiation we can apply Lehmann’s Lemma ([14, 15]) which reduces the action of
a wreath product H oX G on Y X to the action of the group G on the set of all
functions from X into the set of all orbits of H on Y . As a matter of fact it can’t
be applied in the present situation since SA o Sn acts on the set of all m-subsets or
more generally on the powerset

2(An)

of An. For enumerating the isometry classes of block codes each [n,m] code C can
be identified with its characteristic function

χC :An → {0, 1} , f 7→
{

1 if f ∈ C
0 if f 6∈ C,

which fulfils
∣∣f−1({1})

∣∣ = m. The other way round, each function f from An to
{0, 1} with

∣∣f−1({1})
∣∣ = m is the characteristic function of an [n,m] block code
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over A. Using Pólya’s Theorem [18] we can determine the number of classes of
block codes:

Theorem 1 The number of classes of [n,m] block codes over the alphabet A is the
coefficient of xm in the expansion of the substitution xi := 1 + xi into the cycle
index1 of the exponentiation SA o Sn. In short it is the coefficient of xm in

Z(SA o Sn, An)|xi:=1+xi .

It is well known how to compute the cycle index of the exponentiation from the
cycle indices of SA and Sn. See for instance [10, 16, 17]. Using the computer algebra
system SYMMETRICA [22] the following tables were computed:

Table 1. Number of classes of [n, m] block codes over an alphabet of size 2.

m\n 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9
3 1 3 6 10 16 23 32 43
4 1 6 19 47 103 203 373 649
5 3 27 131 497 1606 4647 12320
6 3 50 472 3253 18435 91028 404154
7 1 56 1326 19735 221778 2074059 16.957301
8 1 74 3779 120843 2773763 51.107344 805.174011
9 56 9013 681474 33.297380 1245.930065 38921.113842

10 50 19963 3.561696 375.158732 28900.653074 1.816451.773537

Table 2. Number of classes of [n, m] block codes over an alphabet of size 3.

m\n 1 2 3 4 5 6

0 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 4 10 20 35 57
4 5 34 144 490 1470
5 5 105 1245 11075 82918
6 4 321 12473 334678 7.194272
7 2 846 120213 10.274578 664.545445
8 1 1984 1067757 293.142769 57778.060974
9 1 4023 8.508432 7563.157341 4.570181.600483

10 7074 60.801152 176207.637611 327.615878.641570

3. Construction of block codes

Now let me draw your attention to the construction of transversals of block codes.
For doing this it is convenient to identify the alphabet A with the set a := {1, . . . , a}.
Then the elements f = (f(0), . . . , f(n − 1)) ∈ an can be arranged in the lexico-
graphical order (f1 < f2 < . . . < fan), which can be used to define a lexicographical
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Table 3. Number of classes of [n, m] block codes over an alphabet of size 4.

m\n 1 2 3 4 5 6

0 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 4 10 20 35 57
4 1 10 55 223 759 2309
5 13 254 3227 32970 292103
6 23 1643 77194 2877651 90.647411
7 26 10164 2097080 311.400852 37593.032352
8 32 63488 57.796870 34630.385050 16.429342.163157
9 26 364843 1502.295684 3.667889.498353 6925.787777.638463

10 23 1930906 36065.804158 360.865277.628727 2.729333.815881.686935

order on the set of all characteristic functions χ: an → {0, 1}, by identifying each
function χ with a vector (χ(f1), . . . , χ(fan)). (So each code word can be identified
with a 0-1 vector (χ(f1), . . . , χ(fan)).) Then we may choose the lexicographically
smallest element in the orbit of a block code C (given by its characteristic func-
tion) as the canonic representative of this orbit. In order to apply the standard
algorithm of orderly generation combined with Read’s method of recursion [1, 19]
and learning techniques [7] as described in [11] we have to compute the Sims-chain
[20] of the operating group, which can be quite time consuming using a general
algorithm, since Sa oSn is of order n!(a!)n and of degree an. In the next paragraph
we will see how to compute this Sims-chain which is given by coset representatives
of subgroups of Sa o Sn occurring as pointwise stabilizers of certain subsets of an.

The stabilizer of the first element f1 = (1, . . . , 1) ∈ an is Sa\1 o Sn. So there
are an coset representatives of Sa o Sn/Sa\1 o Sn given by (ψ, id), where ψ is a
function from n to {id, (1, 2), (1, 3), . . . , (1, a)}. Having computed the pointwise
stabilizer of the first ai elements for 0 ≤ i < n (i. e. the set of all elements in
Sa oSn which stabilize each element in {f1, . . . , fai}) we can compute the pointwise
stabilizers of {f1, . . . , f`} for ` ∈

{
ai + 1, . . . , ai+1

}
with the following method.

The set
{
ai + 1, . . . , ai+1

}
can be partitioned into sets

{
(j − 1)ai + 1, . . . , jai

}
for

j = 2, . . . , a. For ` ∈
{

(j − 1)ai + 1, . . . , jai
}

the `-th element f` in an is of the
form

f` = (1, . . . , 1, j, . . .)

starting with n − i − 1 entries of 1 followed by j in the (n − i)-th position and
an arbitrary sequence of length i. Depending on j we have: If j = 2, then the
pointwise stabilizer of {f1, . . . , f`} can be expressed as a direct product

(Sa\1 o Sn−(i+1))× Sa\2 × 〈id〉i.

So there are (n− i)(a− 1) coset representatives of

(Sa\1 o Sn−i)/
(
(Sa\1 o Sn−(i+1))× Sa\2 × 〈id〉i

)
,
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given by (ψ, π), where π ∈ {id, (n− i, 1), . . . , (n− i, n− i− 1)}, ψ(k) = id for
k 6= n− i and ψ(n− i) ∈ {id, (2, 3), (2, 4), . . . , (2, a)}.

For 3 ≤ j ≤ a the pointwise stabilizer of {f1, . . . , f`} is given by

(Sa\1 o Sn−(i+1))× Sa\j × 〈id〉i,

and the a− j + 1 coset representatives of(
(Sa\1 o Sn−(i+1))× Sa\j−1 × 〈id〉i

)
/
(

(Sa\1 o Sn−(i+1))× Sa\j × 〈id〉i
)

are given in the form (ψ, id), where ψ(n− i) ∈ {id, (j, j + 1), . . . , (j, a)} and ψ(k) =
id for k 6= n− i.

Because of the fact that the lexicographically smallest element of an orbit is
chosen to be the canonic representative of it, the minimal distance of a code can be
read from the canonic representative in a very comfortable way. It is the Hamming
distance between the first and the second word in the code (with respect to the
numbering of the elements of an given above). As a matter of fact the first code
word is always f1, and the second code word is of the form (1, . . . , 1, 2, . . . , 2) with
at least one occurrence of 2. So the minimal distance is the number of 2’s in
the second code word of the canonic representative. This fact is very useful for
recursively constructing all [n,m] block codes of given minimal distance.

In addition to this let me point out that in the case a = 2 the S2 o Sn classes of
functions f : {0, 1}n → {0, 1} correspond to classes of boolean functions or switching
circuits. See for instance [21] or [9].

Harrison and High [8] counted classes of Post-functions under various group ac-
tions. These functions are functions f : {1, . . . , a}n → {1, . . . , a}. Even in the
case when Sa o Sn is acting on the domain of these functions, the number of
representatives is growing rather fast. Using the homomorphism principle and
the method of surjective resolution [11] it is possible to compute a transversal
of Post functions, from a transversal of Sa o Sn-orbits on the set of all functions
f : {1, . . . , a}n → {1, . . . , a− 1}. Iterating this process we can start constructing
the classes of Post functions from a transversal of block codes.

4. Random generation of block codes

For many parameter values n, m and a there are far too many representatives
in order to compute complete lists. In these situations we can apply the so called
Dixon-Wilf algorithm [2] for generating block codes uniformly at random. I. e. given
the isometry class ω of a block code then the probability that a random-generated
block code f lies in ω equals

p(f ∈ ω) =
1
α

where α is the total number of isometry classes of [n,m] block codes. The Dixon-
Wilf algorithm says:
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Theorem 2 In order to generate [n,m] block codes over the alphabet A uniformly
at random, first compute α, the number of isometry classes of [n,m] block codes
over A. Then choose a conjugacy class C of SA o Sn with probability

p(C) :=
|C|
∣∣∣(An

m

)
(ψ,π)

∣∣∣
n! |A|n!

α
,

where(
An

m

)
(ψ,π)

is the set of fixed points of an arbitrary element (ψ, π) of C acting on all m-sets
of An. Finally construct a characteristic function χ : An → {0, 1} of an [n,m]
block code that takes values 0 or 1 on the cycles of (ψ, π) ∈ C which are distributed
uniformly at random.

In a first step this algorithm has to compute the cycle index of SA oSn as described
above in order to compute α. Then it must determine the conjugacy classes of the
acting group which is the complete monomial group of degree n over SA. These
conjugacy classes can be described by integer matrices (ai,k) holding the cycle types
of the cycleproducts of (ψ, π) ([11]). In other words, a matrix having n columns
and as many rows as SA has conjugacy classes corresponds to a conjugacy class of
SA o Sn if and only if

∑
i,k

aik = n.

In the next step the probabilities of the conjugacy classes can be computed. Finally
the construction of the characteristic functions of block codes which are fixed points
of the chosen element (ψ, π) in the chosen conjugacy class C must be organized such
that it produces only functions of weight m.

In order to minimize the amount of work before the algorithm actually starts to
generate block codes it is useful to start the generation at once after having com-
puted the information on the first conjugacy class, and evaluate further conjugacy
classes and their probabilities only if required. This means we have to compute
p(Ci) only if the random number (lying in [0, 1[) determining which conjugacy class
to choose exceeds

∑i−1
j=1 p(Cj). The efficiency of this method heavily depends on

the numbering of the conjugacy classes. So this numbering should be chosen such
that p(Ci) ≥ p(Ci+1) which leads to C1 = {id}.

In the computer algebra system SYMMETRICA there are all kinds of routines
implemented in order to compute orbit transversals of block codes or to generate
them uniformly at random.
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Notes

1. The cycle index of a finite group G acting on a finite set X is the polynomial

Z(G, x) :=
1

|G|

∑
g∈G

|X|∏
i=1

x
ai(ḡ)
i ,

where (a1(ḡ), . . . , a|X|(ḡ)) is the cycle type of the induced permutation ḡ of g on X. I. e. the

permutation ḡ can be expressed as a product of ai(ḡ) disjoint cycles of length i for i = 1, . . . , |X|.
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B34j, 1995.
http://cartan.u-strasbg.fr/~slc//divers/../wpapers/s34bayreuth.html.

13. A. Kerber. Anwendungsorientierte Theorie endlicher Strukturen. To be published.
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