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Let a(x), b(x), p(z) be formal power series in the indeterminate = over C (i.e., elements of the
ring C [z] of such series) such that ord a(z) = 0, ord p(x) = 1 and p(z) is embeddable into an
analytic iteration group (7(s, z))sec in C [z]. By a covariant embedding of the linear functional
equation

p(p(x)) = a(z)p(x) + b(x), (L)

(for the unknown series ¢(z) € C[z]) with respect to (n(s,z))sec we understand families
(a(s,x))sec and (B(s,x))sec with entire coefficient functions in s, such that the system of
functional equations and boundary conditions

p(m(s, x)) = a(s,z)p(x) + B(s, z) (Ls)
alt+ s,x) = als, z)a(t, n(s,x)) (Col)
Bt +s,x) = B(s,x)at,w(s,x)) + B(t, 7(s,x)) (Co2)
a(0,z) =1 6(0,2) =0 (B1)
a(l,z) = a(x) B(1,x) = b(x) (B2)

holds for all solutions ¢(x) of (L) and for all s,t € C. In this paper we solve the system
((Col),(Co2)) (of so called cocycle equations) completely, describe when and how the boundary
conditions (B1) and (B2) can be satisfied, and present a large class of equations (L) together
with iteration groups (7 (s, z))scc for which there exist covariant embeddings of (L) with respect

to (71'(57 I))SE(C-

1. Introduction where p(z),a(z),b(xr) € Clx] are given formal
power series and ¢(x) € C [z] should be determined

Let C [z] be the ring of formal power series in the by the functional equation. We always assume that

indeterminate x with complex coefficients. Con-

sider the linear functional equation

z) = px + cox® + 313 + - = pr + cnx"
(o)) = a(@)p(x) + b(a), g P Terterte >
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with multiplier p # 0, and

a(x):ao+a1x+a2m2+~--:2anx”

with ap # 0. For a foundation of the basic cal-
culations with formal power series we refer the
reader to [Henrici, 1974] and to [Cartan, 1963] or
[Cartan, 1966]. If ¢(x) € C[z] is of the form
P(x) = Y, >k dna™ with dj # 0, then k is the or-
der of 1, which will be indicated as ord ¢)(z) = k.
Hence, ordp(z) = 1 and orda(x) = 0. The set of
all formal power series of order 1 is indicated by T,
which is a group with respect to the substitution in
C[«x]. In addition to this, let 'y indicate the set of
all formal power series of the form z+dpz?+--- € I

Furthermore, the notion of congruence modulo
2" will be useful. We write ¢ = 9 mod «" for formal
power series p(z),1(z) € C[x] if 2" is a divisor of
the difference p(z) — ¢ (x). In other words ¢(x) —
¥(x) =0, or its order is greater than or equal to 7.

A formal power series p(z) can be substituted
into the series ¢¥(z) = >, <o dna™ € C[z], i.e., the
series 1(p(x)) = 3, ¢ dnl@(z)]™ can be computed,
if and only if ord p(x) > 1.

The exponential series is given as

n

exple) = Y~

n>0

and the formal logarithm is the series defined by

In(1+z) = Z(_D:lwn

n>1

A family 7 := (7(s,-))sec in I' is called an it-
eration group, (see e.g. [Scheinberg, 1970]), or a
one-parameter group in I, if the translation equa-
tion

m(t+s,x) =w(t, (s, x)) (T)

holds for all t,s € C. Hence, 7(0,2) = z and
n(—1,2) = 7 1(1,7), the inverse of 7(1,x) with
respect to substitution. If we express 7(s,x) in the
form ), -, m,(s)x™, then 7 is called an analytic it-
eration group if all the coefficient functions 7, (s)
are entire functions.

The formal power series p(zx) is called (analyt-
ically) iterable, or embeddable, if there exists an
(analytic) iteration group 7 in I' such that 7(1,z) =
p(z).

There exist only three different types of ana-
lytic iteration groups in I'.

1. m(s,x) =z for all s € C.

2. (s, z) = S71(e*S(x)) for all s € C, where
A € C\{0} and S(x) = +s22% +. .. belongs
to I'g. These iteration groups are called iter-
ation groups of the first type. Each iteration
group of this type is simultaneously conjugate
to the iteration group (e**x)scc.

3. m(s,x) = x + cpsz® + Pkgﬁ_)l(s)xk+1 + ... for

all s € C, where ¢, # 0, kK > 2 and P,n(k)(s)
are polynomials in s for » > k. These itera-
tion groups are called iteration groups of the
second type.

The formal power series p(x) = = can trivially
be embedded into an analytic iteration group. As-
sume p(z) # = and p(z) = pr + coz? + ..., where
p # 0. If p is not a complex root of 1, then let A be
a logarithm In p. In this case there exists exactly
one analytic embedding (7(s,x))sec of p(x) such
that 7(s,z) = eMx +.... Let S(z) =  + s92? +
... be the unique formal power series such that
S(m(1,87Y(x))) = pz, then n(s,z) = S~1(e**S(x))
for all s € C.

If p is a complex root of 1 and p # 1, then the
series p(z) need not have an analytic embedding.
But if such a p(z) has an analytic embedding, then
it is of the first type. In this situation, however, the
embedding need not be unique.

If p(x) = = + cgz® + ... with ¢ # 0 and
k > 2, then there exists exactly one analytic em-
bedding of p(z) in an iteration group of the second
type. (These facts about analytic iteration groups
in C [z] can also be deduced as special cases of the
results in [Reich & Schwaiger, 1977].)

Assume that a(z), b(z), and p(x) are formal
power series given as above. For n € Z we form the
natural iterates of p(x) defined by

T, n=>0

p(p"(z)), n>0
(p~H)"(z), n<0.

Furthermore, for n > 0 we define

p(x) =

and
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Then the conditions

are clearly satisfied.

Lemma 1.1. The two families (a(n,x))nen, and
(B(n, ))nen, satisfy

a(n+m,z) = a(m,z)a(n,p™(z)) (C1)
B(n+m,x) = f(m, x)a(n, p™(x)) + B(n, p™ (x))
(€2)

for all n,m > 0.

We leave the proof by induction to the reader.
If for n < 0 we define

1
a(n,x) = ETI) =
1 _ 1
2o ta(prtn(x)) o a(p" ()
and
L —ﬁ(fn,pn(zﬂ)) — —aln.t —n. o (x
ﬁ(n,x) = 40[(—717]?”(17)) ( ) )ﬂ( » P ( ))7

then Lemma 1.1 holds for all n,m € Z.

Lemma 1.2. If o(z) satisfies (L), then it also sat-
isfies

e(p"(z))

for alln € Z.

= a(n, z)p(r) + B(n, ) (Ln)

Proof. Obvious from Lemma 1.1 and its generaliza-
tion for all n € Z. [ |

Motivated by (Ln), (C1), and (C2) for natural
iterates, L. Reich introduced in [Reich, 1998] the
following notion.

The linear functional equation (L) has a covari-
ant embedding with respect to the analytic iteration
group (m(s,x))sec of p(x), if there exist families
(a(s,z))sec and (B(s,x))sec of formal power series
with entire coefficient functions o, (s) and By (s) for
all n > 0 such that
= afs, z)p(x) + B(s, )

o(n(s,)) (Ls)

holds for all s € C and for all solutions o(x) of
(L) in C[z]. Moreover, it is assumed that o and [
satisfy both the boundary conditions (B1) and (B2)

and the cocycle equations
a(t+s,z) = as,z)a(t, (s, x))

= B(s,x)a(t,m(s,x)) + B(t, (s, x))
(Co2)

(Col)

B(t+ s,x)

for all s,t € C.

Such embeddings were studied in a much more
general setting by Z. Moszner in [Moszner, 1999
and for real-valued functions by G. Guzik in
[Guzik, 1999], [Guzik, 2000], and [Guzik, 2001].
For the theory of linear functional equations we
refer the reader to [Kuczma et al., 1990] and to
[Kuczma, 1968]. In the present paper we deal with
the problem of covariant embeddings in the ring of
formal power series C [z]. In Section 2 we solve the
underlying functional equations (Col) and (Co2)
completely. Then in Section 3 we show how to ad-
just these solutions to given boundary conditions.
And finally, in the last section we describe how
to embed the linear functional equation (L) in the
generic cases.

When dealing with analytic iteration groups
(m(s,z))sec of the first type, it is enough to con-
sider 7(s,z) = eMx. This is explained in the next

Theorem 1.3. Let 7(s,z) = S~ 1(e*S(x)) for
A # 0 and S(x) € I'g be an embedding of p(z).

1. The formal power series p(x) is a solution of
(L) if and only if $ := p o S~ satisfies

P(ey) = aly)3(y) +bly) (L)
where @ :=ao S~ and b:=bo S~
2. The system (Ls), (Col), (Co2), (B1), and

(B2) is equivalent to the system

B(eMy) = a(s,y)@(y) + B(s,y) (Ls)
a(t +s,y) = a(s,y)a(t, e*y) (Col)
Bt + s,y) = B(s,y)a(t, e*y) + B(t, e*y)
(Co2)
a( ,y) = ( B(1,y) =bly), (B2)
wher als,y) = a(s,S7(y)) and B(s,y) =
B(s, 57 (y)).
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Proof. The formal series ¢(x) satisfies (L) if and
only if

p(S7H(S(x))) = alz)p(x) + b(z) <=

(po S~ (*S(x)) =
(o S™H(S(@)(p o STH(S(x)) + (bo STH(S(x)),
which is equal to (L) after replacing S(z) by v.
Assuming that (Ls) holds we deduce
p(S7H(S(2))) = als,x)p(@) + f(s, x) =

(poS™H)(eMS(2)) =
a(s, S7H(S(x)))(p 0 ST)(S(2)) + (s, ST (S(x))),

which is equal to (Ls) after replacing S(z) by y.
The boundary conditions (B1) and (B2) are natu-
rally equivalent to (B1) and (B2). Finally,

alt+s,y) =at+s S y)) =

a(s, S~ y)alt, m(s, 57 (y)) =
a(s,y)at, S (eSS (y) =
a(s,y)a(t, S~ (e*y)) = als,y)alt,e*y),

hence (Col) is satisfied. Using similar methods, it
is possible to show that (C02) is a consequence of
(Co2).

Since (7(s,z))sec and (e**z)ec are conjugate
via the formal power series S(z), it is clear how to
prove the implications into the converse direction.

|

2. Solutions of the cocycle equations

Lemma 2.1. Let E(x) := ey + e1z + --- € CJz],
eo # 0, and let p € C. Then

a(s,x) = e

is a solution of (Col).

Proof. Since w satisfies the translation equation
(T), it is clear that

E(n(t+ s,x)) _

aft +5,0) = M =L

E(n(t,n(s,))) _

ut s
ee E(l‘)

Lemma 2.1 also holds, when e*® is replaced by a
generalized exponential function.

If we express a(s,x) with coefficient functions
in the form

a(s,x) = Z an(s)z",
n=0

then it follows from the cocycle equation (Col)
that ag(t + s) = ap(s)ao(t). Hence, taking into
account the regularity conditions for the coeffi-
cients of o and the fact that ag(s) # 0, it is clear
that ag(s) = e for some pu € C. Consequently,
a(s,x) = eta(s,z) and &(s,x) =1+ a(s)z+....
Using the formal logarithm, there exists exactly one
a(s,z) € C[z] such that orda(s,z) > 1 for all
s € C, and &(s,z) = exp(a(s,z)). The coefficient
functions of & are analytic if and only if the coeffi-
cient functions of & are analytic, which is equivalent
to the fact that the coefficient functions of « are an-
alytic. Furthermore, & is a solution of (Col) if and
only if & satisfies

a(t+ s,x) = a(s,x) + a(t, (s, z)) (Col’)
for all s,t € C.

Theorem 2.2. The family & of formal power se-
ries is a solution of (Col’), and &(0,z) =0, if and
only if there exists a formal power series K(y) €
Cly], ord K(y) > 1 such that

a(s,x) = /08 K(m(o,x))do,

where integration is taken coefficientwise.

Proof. First assume that & is a solution of (Col’)
with &(0,2) = 0. Coefficientwise differentiation of
(Col”) with respect to the variable ¢ and the chain
rule for this differentiation yields

&' (t+s,x) =a(t, m(s,x)).

For t = 0 we get &(s,x) = &'(0,7(s,x)). Since
orda(s,z) > 1, also ordd/(s,z) > 1. Putting
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K(y) := &(0,y), we obtain ord K(y) > 1 and
& (s,x) = K(m(s,z)). By coefficientwise integra-
tion, it follows that

a(s,x) = /Os K(m(o,x))do.

Conversely, assume that a(s,z) is given as the in-
tegral above. We prove that & satisfies (Col’):

t+s

a(t+s,z) = K(m(o,x))do =

0

t+s

/08 K(m(o,x))do + K(m(o,x))do =

S

t
a(s,x) +/0 K(m(t+s,2))dr =

a(s,x) —i—/o K(n(r,m(s,2)))dr =

a(s,z) + a(t, (s, x)),
by applying (7'). From the definition of & it is ob-
vious that &(0,z) = 0. [ |

Corollary 2.3. Using the notation from above, we
have:

1. The family (&(s,x))sec s a solution of (Col)
if and only if there exists K(y) € Cly],
ord K(y) > 1 such that

G(s,x) = exp /OS K(m(o,x))do.

2. The family (a(s,x))sec is a solution of (Col)
if and only if there exist p € C and K(y) €
Cly], ord K(y) > 1 such that

a(s,x) = et exp /OS K(m(o,x))do.

Now we assume that o satisfies (Col). Since
orda(s,z) = 0, it is possible to define ~(s,z) €
C [=] by

B(s; )

a(s, )

v(s,x) == Vs e C.

The coefficient functions of + are analytic if and
only if the coefficient functions of 3 are analytic.

Lemma 2.4. The families o and § satisfy the sys-
tem ((Col),(C02)) if and only if « satisfies (Col),
and vy is a solution of

1t 7(s,2))

o(s.2) (Co2")

vt + s, x) = (s, x) +

Proof. Assume first that « is a solution of (Col),
and « and 3 satisfy (Co02). Then

Yt +s,x) = m
_ B(s,z)a(t,w(s, x)) + B(t, 7 (s, x))

a(s,x)a(t, (s, x))

B(s,z) B(t, 7 (s, z))

a(s,z)  a(s,z)a(t,m(s,x))
o (s
=7(s,2) a(s,z)

Assuming conversely that « is a solution of (Col)
and v is a solution of (C02), we get

Bt +s,z)=a(t+s,z)y(t+s,x)
= a(s,z)a(t, (s, x))
V(7 (s, 2))
a(s,x)
= a(s,x)y(s,z)a(t, (s, x))
+ a(t,m(s,z))y(t, w(s,x))
= B(s,z)a(t,w(s,x)) + B(t, 7(s,x)).

(s, x) +

Theorem 2.5. Assume that « satisfies the cocycle
equation (Col). Then « and (3 form a solution of
(Co2) if and only if there exists a series L(y) €
Cly] such that

B(s,x) = als,z) /08 Mda,

a(o, )

where integration is taken coefficientwise.

Proof. First assume that a and g satisfy (Co2).
Then Lemma 2.4 implies that o and ~ satisfy
(Co2"). Coefficientwise differentiation of (Co02’)
with respect to the variable t yields

ot wls, )

Y (t+s,x) = a5, 2)

For t = 0 we get +/(s,z) = 7/(0,7(s,x))/a(s, ).
Putting L(y) := ~'(0,y), we obtain +/(s,z) =
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L(n(s,x))/a(s,x). By coefficientwise integration it
follows that

v(s,z) = /Us 7L(W(U’x))d0

oo, x

and

B(s,z) = a(s,x) /OS Mda.

afo,x)

Conversely, if § is given by that formula, then

'y(t+s,:v):/0

s L(n(o,z))

afo,x alo,x
PL(n(T +s,2) ,
7(3,%)4—/0 olr + 5,7) dr =

’Y(S,x)—i—/o aL(W(T’W(S’x))) dr =

(s,z)a(T,m(s,x))

1(t,7w(s,7)

v(s,x) + a(s,2)

In other words, o and v satisfy (Co02'), hence by
Lemma 2.4 o and (3 satisfy (Co2). [ |

Now we describe a different representation of
the general solution of (Col) and of the system
((Col),(C02)), involving as few integrals as possi-
ble. In Lemma 2.1 we already derived solutions « of
(Col) which could be represented without integrals
at all. Their form is a motivation for the represen-
tation of the general solution of (Col) we have in
mind here. In the first part of Lemma 2.7 we, sim-
ilarly, present a class of solutions of ((Col),(C02))
which are free of integrals. This motivates the rep-
resentation of the general solution of ((Col),(Co2))
and will be applied in the proof of the form of the
general solution. In this context it is necessary and
helpful to distinguish between the different types of
iteration groups (7 (s, z))sec, and also to consider
certain special cases of p and of (u, M), if iteration
groups of the first type are used. In particular, we
investigate under which conditions the solutions can
be expressed without integrals. Theorem 2.6 sum-
marizes our results concerning (Col), Theorem 2.8
the results concerning the system ((Col),(C02)).
The above mentioned form of the general solutions
will be useful in solving the boundary conditions.

Theorem 2.6. 1. Let nn(s,z) = eMa for A # 0.
Then « is a solution of (Col) if and only if
there exist p € C and a formal power series
E(x) =1+e1x+--- € Clx] such that

E(e*x)

a(s,x) = et E@)

The series E(x) is uniquely determined by «.

2. Letm(s,x) = x+cpsak+--- € C[x] with e #
0 and k > 2. If a(s,x) = e**(1 4 ap(s)z® +
...) = e mod =¥, then o is a solution of
(Col) if and only if there exist p € C and a
series E(x) =14 ejx + --- € Clx] such that

E
afs,z) = 6”5(2((2;)).
The series E(x) is uniquely determined by «.

3. The general solution o of (Col) for iteration
groups (m(s,x))sec of the second type is

a(s,z) =
e’“:li <exp /Os (o, x)”da) N E(Z((i’)x))

with k, € C. The series E(x) and the con-
stants Ky, are uniquely determined by .

Proof. In Lemma 2.1 we described solutions « of
(Col) which could be expressed without integrals.
In Corollary 2.3 all solutions of this equation in in-
tegral form were determined. Combining these two
results, we investigate when

E(m(s,x))

et exp /05 K(m(o,x))do = e** F() (1)

holds, where E(x) = 1 mod x. After applying the
formal logarithm, we have to check when

/OS K(m(o,x))do = E(m(s,x)) — E(z)

is true for E(z) := In E(x). Coefficientwise differ-
entiation of the last equation with respect to the
variable s yields

dE

K(m(s,x)) = @ lynie x)ﬂ'

(s, ), (2)
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where we used the “mixed” chain rule for this
derivation. Case 1: If (7(s,x))sec is an iteration
group of the first type this means

dE

As As
K(ez) = m y:ek%/\e x.

In this formula e*z can be replaced by the inde-

terminate y, hence we get K(y) = )\ydE(y). Since
ord K(y) > 1 and X # 0, it is possible to d1v1de by
Ay, and we end up with a differential equation

(3)

Assume that K(y) = 3,50 &ny", then the Ansatz
E(y) = 3,51 ény" leads to €41 = &p/(n + 1) for
all n > 0. Hence, all the coefficients e,, of E(x) for
n > 1 and n = 0 are uniquely determined.

So far we proved that the series E is uniquely
defined by K. Next we show that each solution F
of the differential equation (3) with E(0) = 0 leads
to a solution F of (1) by setting E(y) = exp E(y).
Since F is a solution of the differential equation, it
is clear that

dE

K As b )\s
(e*x) = Xe dy ey’

The right hand side of this equation is %E (M),

hence
/ Kl(e

z)do = E(ex) — E(e’x)

exp/K

and

e exp(B(eMz) — B(x)) =
s €XP E(ﬁksx) _ eusE(e’\Saz)
oxp () E()

Moreover, the coefficient ey of E(x) is equal to 1,
since E(z) = exp E(X) and ord E(z) > 1, which
finishes the proof for iteration groups 7 of the first
type.

Case 2: If (m(s,x))sec is an analytic itera-
tion group of the second type, then from iteration
theory (cf. [Scheinberg, 1970] or [Reich & Schwai-
ger, 1977]) it follows that «'(s,z) = H(n(s,x)),

where H(y) := 7'(s,y)|s=o is the infinitesimal gen-
erator of m. In the present situation H(y) =

cxy® 4 ..., hence ord H(y) = k, and (2) means
dE
K(n(s,x)) = — H(m(s,x)).
(rs.0) = 5| Hr(sa)

After replacing 7(s,z) by the indeterminate y, we

realize that ord K (y) > k, since K(y) = H(y)dgéy)_
(This, however, is equivalent to a(s,z) = e** mod

xk) Hence, we end up with the differential equation

= K(y) =

which, similar as in the first part of the proof, has
exactly one solution E(y) = >, ~; €xy".

Finally, it remains to prove that each solution
E of this differential equation with E(0) = 0 yields
a solution F of (1). Let E be a solution of (4) with
E(0) = 0, then

dE
Kr(s.o) = 5| . Hs)
4B
- dy y:ﬂ'(s,gv)Tr (8,.%') BsE( ( ))
and

Substitution into the exponential series and multi-
plication by e*® yields

e“sexp/ K(m(o,x))do =
0

e exp(E(n(s,x)) — E(z)) = M

Hence, E(z) satisfies (1) and E(z) = exp E(z) =
1 mod 2°.
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Case 2.1: From Corollary 2.3 we deduce that
the general solution « of (Col) is given by

s (k-1
a(s,z) = et exp/ (Z knm (o, )"
0 \n=1

+ Z kn(o,z)" | do

n>k

k—1 s
= el exp (Z ﬁn/ (o, x)”da)
n=1 0
'exp/ K(n(o,z))do
0
with K (y) = > n>k kny". By Corollary 2.3
exp/ K(n(o,z))do
0

is a solution of (Col), and it is of the form 1 +
ay(s)x® + ..., since ord K(y) > k. Hence, by the
second part of the present theorem there exists a

unique series E(z) =14 ejz + ... such that
. E

exp [ R(n(o.a))do = 2]

Summarizing, we found
a(s,x) =
k—1 "
S n E
e“sg (exp/o (o, x)”da) (2((2)@)

(We also applied the identity

(exp @(y))" = exp(r®(y)),

holding for the formal series exp and the formal
binomial series with ord ®(y) > 1.) [ |

Lemma 2.7. Let E(z) = ey + e1x + --- € CJz],
eo # 0, and assume that F(z) € C[z] and p € C.

1. The series

B(s,z) =
e E(m(s,z))[F(x) — e " F(m(s,x))]

together with o given in Lemma 2.1 satisfies
(Co2) for any analytic iteration group .

2. Assume that w(s,z) = x +cpsxh +--- € C[z]
with k > 2 and ¢, # 0 is an analytic itera-
tion group of the second type, and let P(s,x)
denote the series

Pls,z) = :E (exp /0 (o, x)”da) "

Then 3 defined by

B(s,x) = el P(s,z)E(n(s,x))

. {m) " F;jjg)]

together with a given in the third part of The-
orem 2.6 satisfies (Co02).

Proof. The families o and [ satisfy (Co2) if and
only if

Bt + s,x) — B(t,7(s,x)) = B(s, z)a(t,7(s,x))
for all s,t € C. If we express 0 and « by E, F, 7,
this is
M B(r(t + 5,2))[F(z) — e ") P(n(t + 5,2))]

— e B (r(t, 7(s, 1)) [F(w(s, z))
—e_“tF(W(t,w(s,x)))} =

M E(n(s, x))[F(z) — e F(n(s,x))]

et

E(n(t,m(s,x)))
E(n(s,z))

Application of (T') together with simplification of
both sides yields

B (n(t+ 5,2))F ()
—eM E(n(t, m(s,x)))F(n(s,x)) =
e F(x)e! E(r(t,n(s,x)))
—F(m(s,x))e" E(n(t,7(s, x))),

which is always true, since 7 satisfies (7).

The proof of the second part is similar to the
proof above; the reader only has to take into ac-
count that (P(s,x))sec is a solution of (Col). N
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Theorem 2.8. Let a be a solution of (Col).
1. Assume that 7(s,z) = eMx for X # 0 and

actually occurs. Moreover, let ng be the min-
imum of {n e N|1<n<k-1, Kk, #0}.

that « is given as in the first part of Theorem
2.6.

If p — nX\ # 0 for all n € Ny, then (o, 3) is a
solution of (C02) if and only if there exists a
formal power series F(x) € C[x] such that

B(s,z) = e B(eMa)[F(z) — e " F(eMx)].

The series F(x) is uniquely determined by o«
and (3.

If = noA for ng € Ny, then (o, ) is a solu-
tion of (C02) if and only if there exist a formal
power series F(x) € Clz] and £y, € C such
that

Bs,x) =
'S B(eMx)[lny sz + F(x) — e " F(eMx)].

. Let m(s,x) = x + cgsz¥ + - € C[a] with
c, #0 and k > 2.

Assume that o can be expressed as in the sec-
ond part of Theorem 2.6. If u # 0, then («, 3)
is a solution of (C02) if and only if there ex-

ists a formal power series F(x) € C[z] such
that

B(s,x) =
M E(n (s, x))[F(z) — e F(n(s, x))].
The series F(x) is uniquely determined by o
and (3.

If p =0, then (o, B) is a solution of (Co2) if
and only if there exist a series F(x) € C[x]
and coefficients £y, ..., lk_1 € C such that

ﬁ(sa IE) =
E(n(s, z))[F(z) — F(r(s,2)) + Q(s, z)]

If u #0, then (a, B) is a solution of (Co2) if
and only if there exists a formal power series
F(z) € C[z] such that

B(s,z) = el'*P(s,x)E(n(s,x))
F(m(s, x))

| F(x) —e Pls.2)

The series F(x) is uniquely determined by o
and (3.

If u=20 and [no#szl, or kg—1 —mcy, # 0
for all m € N], then («, B) is a solution
of (Co2) if and only if there exist a formal

power series F(x) € Clz] and coefficients
Lo, ..., lyy—1 € C such that

B(s,x) = P(s,x)E(n(s,x))

where
_no 1 s lpm(o, )
Qs,z) = 7;)/0 P(a,x)E(W(Ual'))dU

The series F(x) and the coefficients ¢, are
uniquely determined by o and (.

If u =0, ng=k—1, and kK1 = nici for
ny € N, then (o, 3) is a solution of (Co2) if
and only if there exist a formal power series
F(z) € Clx] and coefficients Lo, ..., lny—1
and ¢! in C such that (s, x) equals

ni+no

F(r(s,x))

Blr(s,0)Plo, ) | Fe) ~ T

o, :E)m-i-no

S ﬂ_(
—I-Q(s,x)—i-ﬁzﬁno/o Plo.2) do| .

where
Proof. We apply similar ideas and arguments as in
Q(s,x) = Z/S b (o, )" do. the' proof of‘ Theorer.n 2.6. In ‘Lemma 2.7 we de-
o E(r(o,x)) scribed special solutions, and in Theorem 2.5 all
solutions of (Co02) in integral form were given. If
3. Let a be the general solution of (Col) given  « can be expressed without any integrals, then we
in the third part of Theorem 2.6, and assume check when

that alsa [ HTlo2)
o) | do =

k—1 s Ko ao,x) (5)
P(s,x) := ex (o, x)"do
(2,2) 7!_11 ( p/o (:) ) e E(n(s,x))[F(x) — e " F(m(s,z))]
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holds. This is equivalent to

[t
0

(o, ) = E(z)[F(z) — e " F(m(s,x))].

Coefficientwise differentiation of the last equation
with respect to the variable s yields

L

) — (o) e Fla(s,0)
_us AF

—e -
dy ly=n(s,z)

#(s.0)|

Case 1: If 7 is an iteration group of the first
type, this means

L(eMz) = a(s, z)E(x) [ue_’“F(e’\sx)

Using the special form of a from the first part of
Theorem 2.6 and replacing e*z by the indetermi-
nate y gives

Assume that L(y) = 32,5 fny"™, then the Ansatz
F(y) =2 50 fny" leads to

Dbyt = (1= nA) fy™.

n>0 n>0

Case 1.1: If p—n\ # 0 for all n > 0, then F'(y) is
uniquely given by

ln
n—nA

fn= Vn > 0.

So far we proved that in this situation the series
F' is uniquely defined by L. Next we show that
each solution F' of the differential equation (6) is a
solution of (5). Since F is a solution of (6), it is
clear that

pEF(y) — AyM

L(y) = E(y) a

After replacing y by e**z and using the special form
of a,, we derive that

dr
E(z) |pe M F(eMx) — ef”sAe)‘sx—‘ ] =
y=ersz

dy

E(az)i(—e“sF(eAsx)).
Coefficientwise integration, finally, yields the de-
sired result.

Still we are dealing with analytic iteration
groups (7(s,x))sec of the first type. But now in
case 1.2 we assume that u = ngA. In this situ-
ation, comparing the coefficients of y"° yields the
condition 0 = (p — noA) fng = lng- If €ny # 0, then
we split L(y) into the form

Z Znyn + Enoyno .

n>0
n#nQ

From Theorem 2.6 we know that 3 is given as

s L(e’\”x)

B(s,x) = a(s,a:)/ ————=do =

0 a(erx)

€MSE(e)‘Sac) /5 L(e*x)E(z)
E(z) J, et E(erx)

S
e“SE(e’\S:L“)/ e_“UZEne"Aam"da =
0

n>0

M E(eMx) (/ lpodo ™
0

+ / Z e(n’\“)"ﬁnx"da> -
0 n>0

n#nq

S B (eMx) [l 5™ + F(x) — e " F(e*x)].

For n # ng the coefficients f, of F(z) are uniquely
given by
by
fn = e
whereas f, is not determined.

Conversely, it is left to the reader to prove that
each series F' with coefficients f,, = ¢, /(u—n\) for
n # ng and arbitrary f,, € C is a solution of (5).

In case 2 of the present proof we assume that
(7m(s,x))sec is an iteration group of the second type.
In case 2.1 we investigate when (5) holds. For do-
ing this, we assume that « is given as in the second
part of Theorem 2.6. Inserting the special form of
a, coeflicientwise differentiation with respect to s,
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and expressing 7'(s,z) as H(w(s,z)), where H is
the infinitesimal generator of 7, yields the equation

Lin(s,2)) = E(n(s,)) [qu(s,x))
_dF

i y:W(W)H(W(S, m))] .

After replacing 7(s,x) by y, we end up with the
differential equation

L(y) := ]j;i((‘z)) = pF

Assume that L(y) Y onso by and H(y) =
Y nsk hny™, where hy, = ¢, # 0, then the Ansatz

F(y) = > >0 fny™ leads to
Y byt =p Z fy"
n>0
3 (= X 04Dk}

n>k r+s=n
- s>k

Comparing coefficients yields

en = :u’fTh n < k
n—k+1
by = ,Uffn - Z rfrhn—r—f—ly n > k.
r=1

Case 2.1.1: If u # 0, then F' is uniquely de-
termined by

by
fn = n<k:
u
n—k+1
fo = (ﬁ + Z 7 b 7«+1> n>k.
r=1

Assuming conversely that F' is a solution of (7), it
is left to the reader to prove that I satisfies (5).
(The proof is similar to that given in the first part
of this proof.)

Case 2.1.2: If y = 0, then (7) reduces to

_dF(y)

L(y) = i

— = H(y) (8)

or in more details

n—k+1
Zﬁny” = - Z < Z rfrhnr+1> y".

n>0 n>k r=1

Comparing coefficients yields a necessary condition

for the coefficients of L, namely
l, =0, n<k

and a formula to determine recursively the values
of fy by

n—1
gk—l—n—l + Zrzl Tfrhk—l—n—r
ne, ’

Jo=— n=>1,
since hy = cg. The coefficient fj is not determined
by (8). In conclusion, ord L(y) > k, which implies
that ord L(y) > k, and finally ord 3(s,z) > k.

Assuming conversely that F' is a solution of (8)
with arbitrary fy € C, it is left to the reader to
prove that F satisfies (5) for u = 0.

If ord L(z) < k, then we get by combining the
above calculations with the integral form of the gen-
eral solution that

B(s,x) x)) + Q(s,x)].

Case 2.2: Let a be the general solution of
(Col) given in the third part of Theorem 2.6. Then

ﬁ(svx) =

o Be(s) [ Li(e.)E)
et P(s, x) /OquP(a x) (m(o,x))

= E(n(s,2))[F(z) - F(n(s,

do =

e“sP(s,:c)E(ﬂ(s,x))/ e ~no LAT(9, 7)) P( ,x) o.

0
First we check when

e"*P(s,x)E(m(s,z)) /08 e_‘”mda =

e’ P(s,x)E(m(s,x)) [F(x) _ e—usM

holds. This is obviously equivalent to

/s polmom)
0

F(n(s,z))
P(o, ) ‘

F(x)—e# Pls.7)

Coefficientwise differentiation with respect to the
variable s gives

s Lr(s,2) 0 Fn(s,7)) _
P(s,x)  Os CP(s,x)

—e” <88P F(x
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1 dF

—e M H(w(s,x)),
P(s,x) dy ly=n(s,) (nls. 7))

where H is the infinitesimal generator of 7. Since

o1 Yn(rn(s )"
0s P(s,x) P(s,x) ’

we end up with the differential equation

k—1
L) = (M £y mny"> Fy) - S G, (10)
n=1

after replacing 7(s, ) by y. The usual Ansatz leads
to

Yoyt =n) fay"

n>0 n>0
min{k—1,n}
+ Z Z Krfnr yn
n>1 r=1
n—k+1
S (X )
n>k r=1
Hence, the coefficients satisfy
bo = pfo,
n
gn:,ufn'f'zﬂrfn—rv 1<n<k,

r=1
and

n—k+1

k—1
by = :ufn + Z ’irfn—r - Z Tfrhn—r—‘rl

r=1 r=1

for n > k. In case 2.2.1 we assume that p # 0.
Then F'is uniquely given by

14
fo=—,
i
1 n
fao=— gn_zﬂrfnfr ) 1<n<k,
K r=1
and
1 k—1 n—k+1
fa=— (gn - Zﬁrfn—r + Z rfrhn—r—‘rl)
H r=1 r=1
for n > k.

Again it is left to the reader to prove that F
satisfies (9).

What happens if © = 0, which is case 2.2.27
If ng denotes min{n e N|1<n <k-1, s, # 0},
then (10) reduces to

k—1
L(y) = (Z m/‘) F(y) - CU;S/)H(y)-

Since the right hand side is a power series of order
> ng, the coefficients of L(y) satisfy

£, =0, 0 <n < ng,
n
Ly = Z Ky fr—rs ng <n <k,
r=ng
and
k—1 n—k+1
£y = Z Kr fn—r — Z T frhn—ri1
r=ng r=1
for n > k.

Consequently, ord L(y) > ng, and ord 3(s, ) >
ng. Hence, for ng < n < k the coefficients f,_y,
are uniquely determined by

1 n
fn—no = ? (gn - Z

1o r=ng+1

nrfn_r> . (11)

For n > k we still have to consider different cases.
Case 2.2.2.1: If ng < k—1, then n —ng > n —
k+1 and f,_y, are uniquely given by the recursive
formula

k—1

Z Erfn—r

r=np+1

n—k+1
+ Z Tfrhn—r—l—l)-
r=1

Case 2.2.2.2: If ng = kK — 1, then for n > k

1
fn—no = ? (&L -

no

n—k+1
by = Kk—1fn—k+1 — Z rfrhn—ri1 =

r=1
12
. (12)

('K‘:kfl - (TL —k+ l)hk)fnkarl - Z Tfrhn—r—&-l-

r=1

The reader should remember from case 2.1 that hy
equals c.
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Case 2.2.2.2.1: If k1 —mcp # 0 for all m €
N, then

En + Zﬁ;{c r.frhn—r+1
Kk—1— (n—k+ 1)cg

fn—no = fnkarl = (13)
for n > k.

Finally we have to consider in case 2.2.2.2.2
that p = 0, ng = k—1, and that there exists n; € N
such that ki_1 = nicg. If n — k+ 1 = nq, which is
equivalent to n = n; + k — 1, we have

ny1—1

Z Tfrhn1+k7r =

r=1

lpyvk—1 = (Kg—1 — n1ck) fny —

ni—1

- Z Tfrhnl—i—k—r-
r=1

This is a necessary condition for writing 3(s,z) as
in the right hand side of (9) for 4 = 0. In general
let

ni—1

/ R
gnl—f—k—l = Z Tfr’hnl—i-k—fr’

r=1

then
siﬂ(ﬂ'(a,x)) o= L w(o,z)"do =
|, Py =, Plo.a) & (e

Y tam(o,2)" 4 b g gm(o @)

n>k

S
/ n#ny+k—1
0

P(o,x)

(€n1+k71 - e;“-i,-k—l)ﬂ-(gv x)nlJrkil

P(o,x)

do =

F(W(S, .%')) 1" § 7r(0-7 x)nl‘i’kfl
F(x) - “Pls.a) n1+k—1/0 Wda’

Ui _ !
where €7 ., | =Ln k-1 — €, 44 - Forn #*mny +

k — 1 the coefficients f, ki1 of the series F'(z) are
uniquely given by the two formulae (11) and (13),
and fy, is not determined.

Also in the last cases it is left to the reader to
prove that each solution F of the differential equa-
tion (10) also satisfies (9) for u = 0.

In order to finish case 2.2.2 completely, if
ord L(x) < ng, then it follows in a similar way as in
case 2.1.2 that the corresponding term Q(s, x) must
be added to obtain the general solution. [ |

3. Solutions which satisfy the boundary
conditions

In this section we assume that (7(s, x))sec is a given
iteration group. We determine solutions v and (3 of
the cocycle equations (Col) and (Co2) which also
satisfy the boundary conditions (B1) and (B2) for
given formal power series

a(x) = Zanazn, ap # 0 and b(x) = Z bpx".

n>0 n>0

From the results of the previous section it is obvi-
ous that (B1) is always satisfied. We only have to
consider (B2) for further investigations.

First we deal with analytic iteration groups
of the first type, i.e., we consider 7(s,z) = e’z
for A # 0. Before describing the solutions «
which satisfy the boundary conditions we need
a preliminary result. If J = J(\) denotes the
set {n € N | n\ € 2miZ}, then the following lemma
holds.

Lemma 3.1. Assume that J is not empty, and let
jo be the minimum of J. Then J = Njj.

Proof. Since jo € J, there exists zp € Z such that
joA = 2zgmi. Then njoA = 2nzomi € 2miZ for all
n € N. Hence, Njj is a subset of J. Conversely,
assume that n € J, then by division we deduce
that n = qjg + r with uniquely determined r such
that 0 < r < jo. From 27miZ > n\ = (gjo + )\ =
qjor + 1A = 2qzomi + rA it follows that r\ € 27iZ,
and consequently r = 0. Hence, n € Njg, which
finishes the proof. |

In the first part of Theorem 2.6 the general solution
a of (Col) for analytic iteration groups (7 (s, x))sec
of the first type was described. We want to analyze
how to adjust it to the condition (1, z) = a(z).

Theorem 3.2. Assume that a(x) is a given formal
power series of order 0.

If J = 0, then there ewists exactly one formal
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power series E(x) =1+ ejx+ ... such that
E As
a(s,x) = e“sg(x;c)

is a solution of (Col) which satisfies a(1,x) = a(x).

If J # ), then there exist formal power series
E(x) =1+eix+... such that a(s,x) of the above
form satisfies both (Col) and the boundary condi-
tion if and only if for n € J the coefficients a,
satisfy

n—1
ap = — E Qr€p—r,
r=1

where e, are the coefficients of E(x).

Proof. Writing « as indicated above, the assump-
tion (1, z) = a(z) is equivalent to

n
e“g enem‘xnzg E GrCnr.

n>0 n>0 r=0

Comparing coefficients yields for n = 0 that e# =
ag, since eg = 1. Hence, u is a logarithm In ag. For
n > 1 we get

n—1
A
ete™ e, = ape, + g ArCp_r + an,

r=1

which implies
n—1
ao(e")‘ — e, = Z GpCper + G-
r=1

For n ¢ J the coefficient e, is uniquely determined

by
Sy

en = (e —1)

However, for n € J the coefficient e, is not de-
termined and actually can be chosen arbitrarily in
C, whereas a, must satisfy the condition above.
We will not analyze these conditions further in the
present paper. |

Before we adjust  to the condition B(1,x) =
b(x) we need another preliminary result. Let K =
K(p,A) denote the set {n € Ny | p—n\ € 2miZ}.
Then the following lemma holds.

Lemma 3.3. Assume that the cardinality of K is
greater than 1. Then J is not empty and

K = {ko+njo | n € No} =

{n €Ny |n=komod jo},

where ko := min K and jo := minJ. If |[K| = 1,
then J = ).

Proof. First we prove that when ny and no are two
different elements of K such that ny > no, then
n1 — ng belongs to J. Since ni,ny € K, there exist
21,22 € Z such that u—ni A = 2zym and p—no\ =
2zomi. Then (ng —ng)A = (L —n2X) — (L —n1A\) =
2(z9 — z1)mi € 2miZ and nqy — ny € N. Hence ny —
ng € J.

Since kg € K and jg € J, there exist 29,21 € Z
such that u—koA = 2z¢me and joA = 2z17i. Let n €
Ny, then p— (k‘o—l-njo))\ = pu—koA—njoA = 2zqmi —
2nzymi = 2(z9 — nzy)mi € 2miZ and consequently
ko + njo € K. Thus, ky + Nyjo C K.

In the next step we prove that kg < jo. (Then
it is clear that kg + Ngjo is the set of all positive
integers congruent kg modulo jo.) If we assume that
ko —jo > 0, then ko — jo € K since p— (kjg —j()))\ =
2(z0 + z1)mi € 2miZ. Moreover, kg — jo < ko, which
is a contradiction to the construction of kg.

Finally, we have to prove that K C kg + Ngjp.
Let n € K. If n # kg, then n > kg and then there
exists z € Z, such that y — nA = 2zwi. Moreover,
(n — ko)A = 2(z0 — z)mi € 2miZ, thus n — kg € J =
Njo by Lemma 3.1. Hence, n € kg 4+ Njp.

If |K| = 1, then necessarily J = (). Because
if we assume that J # (), then J = Njo. Hence,
ko+J C K, which is a contradiction to |[K| =1. N

Let a be a solution of (Col) where 7 is an an-
alytic iteration group of the first type. The general
form of 8, which satisfies together with « the co-
cycle equation (C'o2), was given in the first part of
Theorem 2.8.

Theorem 3.4. Let 7 be an analytic iteration group
of the first type. Assume that b(z) is a given formal
power series and « is a solution of (Col) given by

E(e*x)

a(s,x) =et?

with E(x) =14+e1z+....
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1. If K =0, then there exists exactly one formal
power series F(x) such that

B(s,z) = e E(eMx)[F(x) — e " F(e*x)]
together with « is a solution of (Co2) satisfy-
ing A(1,7) = b(z).

2. If K#0 and p—n\ #0 for all n € Ny, then
there exist formal power series F(x) such that

B(s,x) = et E(eMx)[F(z) — e " F(eMz)]

together with « is a solution of (C'o2) satisfy-
ing the boundary condition if and only if for
n € K the coefficients by, satisfy

n—1
b, = Z en_rfreIN et — ™), (14)
r=0
where e, and f, are the coefficients of FE(x)
and F(z).

3. If K # 0 and p — ng\ = 0, then there exist
formal power series F(x) and £,, € C such
that

B(s,z) = e’ B(ex) [(pys2™
+ F(x) — e_“sF(eAS:C)]

together with « is a solution of (C0o2) satisfy-
ing the boundary condition if and only if for
n € K\ {no} the coefficients by, satisfy (14)
for n < ng, and b, equals

n—1
Z enirfTe(n—r)A(eu _ 67")\) + fnoenfno en)\
=0

r#nQ
forn € K and n > nyg.
Proof. Writing (8 in the form
B(s,z) = e E(eMx)[F(x) — e " F(ex)],

and assuming that there is no ng € N such that p =
noA, the assumption b(z) = B(1, x) is equivalent to

anxn _ EMZ ( n enrfre(n_r))\> "
0

n>0 n>0 \r=

n
- Z ( enrf?") en)\wn7
0

n>0 \r=

which yields for all n > 0 that b, equals

n—1

Z eninTe(n—r))\(eu o er)\) + eofnenk(eu—n)\ o 1)'
r=0

If n ¢ K, then f, is uniquely given by

bn — Z?;(:)l en_rfre(n—T'))\(e/J o er)\)
en)\(eli*”/\ _ 1)

fn:

For n € K the coefficient f, can be chosen arbitrar-
ily in C, and b,, must satisfy

n—1
bn — Z eninre(n—r))\(eu _ eT}\).
r=0

If there is ng € N such that u = ngA, then
nog € K. Since in this situation

B(s,z) = P E(eMr) [0, sz +F(z)—e M F (M),

the formulae above are only correct for n < ng.
Comparing coeflicients for n > ng yields

n
b, = Z en_rfre(”_r))‘(e“ — er’\) + ﬁnoen_noen’\.
r=0

r#nQ

For n = ng the coefficient ¢,, is uniquely deter-
mined by

no—1
lpy =€ # <bn0 — Z eng—r [T (et — e”‘)) .
r=0

Furthermore, for n > ng and n € K, the coeflicient
fn is given by the fraction

n—1

b, — Z en_rfre("fr)A(e“ - er)‘) — Enoen_noe”)‘

r=0
r#ng

en)\(eu—nA _ 1)

and for n > ng, n € K the coefficients b,, must
satisfy the condition

n—1

—r)A A A

b, = E en_rfre(” ") (e =€) + lpyen—ny €™
r=0
r#nQ

We will not analyze these conditions further. [ |

The importance of the next theorem will be
clear in connection with Theorem 4.1.
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Theorem 3.5. Let (s, x) = e*z, where p = e is

not a complex root of 1. Assume that a(x) and b(x)
are given power series, where orda(x) = 0. Then
there exists a suitable o, which satisfies (Col) and
the two boundary conditions, such that there is ex-
actly one B, which satisfies the boundary conditions
(B1) and (B2) and together with « also the cocycle
equation (Co02).

Proof. Since p is not a complex root of 1, it is ob-
vious that J = J(\) is empty. Hence, according
to Lemma 3.3 the set K = K(u,\) is empty or
K has cardinality 1. In the first case everything
is clear from Theorem 3.2 and Theorem 3.4. If
K = {ko}, let p be a logarithm of ag and a(s, z)
be given as in Theorem 3.2. Hence, there exists
some z € Z such that pu — koA = 2zmi. Then
w— 2zmi = koA. If we replace p by u' := p — 227,
then ag = et = e* and i’ = kg, which means that
K(u',\) = {ko} and ¢/ — koA = 0, hence ko = ny
from the second part of Theorem 3.4. Moreover,
o/ (s,1) == el =M (s, z) is also a solution of (Col),
which satisfies the boundary conditions. As was de-
scribed in the proof of Theorem 3.4, the coefficients
fn (for n # ko) and ¢y, are uniquely determined.
Just fi, can be chosen arbitrarily in C. Moreover,
the series b(x) need not satisfy any necessary con-
ditions, so also in this situation there always ex-
ists a [ satisfying (Co2) and (B2). According to
Theorem 2.8, for computing (s, x) it is necessary
to determine F(z) — e #5F(e*x). Because of the
special choice of p/ and A, this difference reads as

Z froa™ — e—H'S Z fnen)\sxn _

n>0 n>0

Z(l _e(_”/+n)\)s)fnl'n _ Z (1 —e(_“/+n>\)s)fnl'n,
n>0 n>0

n#kq
consequently it does not depend on the coefficient
fko, which still could be chosen arbitrarily. Hence,
[ is uniquely determined in this situation. [ |

Now we come back to the analytic iteration
groups of the second type, i.e., 7(s,z) = =z +
cpsx® 4+ ... with k > 2 and ¢; # 0. The embed-
ding for those «, which are of the form «(s,z) =
et + ag(s)z® + ..., is described in

Theorem 3.6. Assume that a(x) is a given formal
power series of order 0, and w is an analytic itera-
tion group of the second type. There exists a formal
power series E(x) =14 ejx + ... such that

afs,x) = et

is a solution of (Col) satisfying the boundary con-
dition if and only if a, =0 for 1 <n < k.
If E(x) exists, then it is uniquely determined.

Proof. In this situation again the boundary condi-
tion a(l,z) = a(z) is equivalent to a(z)E(z) =

eE(p(z)). First we compute FE(p(x)) which is
equal to

> enlp@)" = enlz+ et +. ] =

n>0 n>0

Z en(z" + nep™ R 4 ) =

n>0
k—1
Z enz” + Z (en +(n—k+1)e,_gr1ck
n=0 n>k

+Ry—pti1(en, ... ;en—k)>xn>

where R, ;11 = Ry—r+1(e1,...,en—k) are univer-
sal polynomials in ey, ...,e,_x, and Ry = 0. Hence,
« satisfies the boundary condition if and only if

n k—1
g ap_rey | 2™ = et g enx”
0 n=0

n>0 \r=

+-et Z (en+(n—k+ 1Dep—gr1ck + Rp—g1) 2"
n>k

Comparing coefficients on both sides, we derive for
n = 0 that ag = e*, since eg = 1, hence p = Inag.
Then for 1 < n < k the coefficient a,, = 0, since

n—1

E Un—rer + apen, = efe,
r=0

is equivalent to
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Hence, recursively we get

n—1
ap = — g Ap_rer = 0.
r=1

Finally, for n > k, write n as k + j for j > 0.
Comparison of coefficients of 2*17 yields

k+j
ap€k+; + Z AsChyj—s =
s=k
e"(entj + (7 + D)ejrack + Rj),
which reduces to
J
Zakﬂ,rer = 6“((j + 1)€j+1ck + Rj+1).
r=0

From this formula the coefficients e;;1 can uniquely
be determined by

€M Y 0 Oherj—rer — Rja
(J+ ek

€j+1 =
[ |

In order to deal with the general form of «, let
P, (s, z) be given by

Pas(sso)i= (0 [ n(oayas) =

exp ([ ato,ao

for 1 <n < k. Then P(s,z) = Hfl;% Py, (s, 2).

Lemma 3.7. Let (7(s,z))sec be an analytic itera-
tion group of the second type, k € C, and assume
that 1 <n < k. Then Py ,(s,x) =1+ ksa" +....

Proof. Computing the first coefficients, we get

m(o,2)" = 2" + nepox™ TR 4

hence s

k [ m(o,x)"do = ksz™ + ...,
0

and consequently P, . (s, z) is of the given form. W

Standard computations can be used in order to
prove

Lemma 3.8. Writing the series P(s,x), which is
the product HZ;11 Py ., (s,2), in the form

P(s,x) = an(s)x",

n>0
then
1, n=20
pn(s) = K15, n=1
EnS+ qn(K1y -y fn-1,8), 2<n<k

where ¢ (K1, ..., Kkn—1,8) is a polynomial in Ky, ...,
Kn—1 and s. From this explicit form of pn(s) for
1 < n < k it is possible to determine the wvector
of parameters (K1,...,kp—1) of a given polynomial
P(s,x) in a unique way.

Already at the very beginning of this article we
realized that ag(s) = e”®, hence ap(1l) = e* = ap.
Consequently, it is enough and also easier to adjust
a(s,x) = e Ma(s,x) to the boundary condition
a(l,z) = a(x) := e *a(x). The main idea is for-
mulated in the next

Lemma 3.9. Let a(z) =1+ 3 5, apz" for 1 <
no < k. Then there exists exactly one P, (s, x)
such that

=1 mod g™t

Proof. When we choose v = ng and k = ay,, then it
is clear from Lemma 3.7 that a(z) = P, (1, z) mod
z™7F1 In order to prove that P, .(s,z) is uniquely
defined, assume that there exists a series P, ./ (s, )
such that a(zr) = P, (1,2) modz™t! then

ord(a(x) — Py w(1,2)) > no+ 1. Hence, P (1, x)
starts with 1 + ap,2™. Consequently, v/ = ng =
v and £ = ap, = Kk by Lemma 3.7. Hence,
Py (s,2) =P, u(s,x). [ |

From this lemma it is obvious that

a(zr) = P, motl,

0:img (1,x2) mod z
Now we can adjust the general solution o given
in the last part of Theorem 2.6 to the boundary

condition.
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Theorem 3.10. Let a(z) = 1+ >, anz" be a
given formal power series of order 0, and assume
that 7 is an analytic iteration group of the second
type. Then there exists exactly one solution

E(n(s,z))
E(x)

of (Col) with E(z) =1+ eyx + ... which also sat-
isfies the boundary condition &(1,x) = a(x).

a(s,x) = P(s,x)

Proof. According to Lemma 3.9, there exists ex-
actly one Py ,, (s, ) such that
a(x)
Pl,lﬂ (17 .f)

Assume that recursively for 1 <n < k—1 we found
uniquely defined P, ., (s, x) such that

a(z)
Pl,f-cl(]-’x) Tt Pn,nn(laf)

=1 mod z2.

=1 mod 2",

then by Lemma 3.9 there exists exactly one series
Pri1,knsq (8, 7) such that

a(x)

= 1 mod 2" 2
Plﬂﬂ(la :E) t Pn+1,lin+1(1a .T)
holds. Hence, we end up with
a(z) k
= 1 mod z",
Pl,lil (1, .%') e Pk—l,/ik,1 (1, .7))
where P, (s,x), ..., Px_14,_,(s,x) are uniquely

determined. From Theorem 3.6 we deduce the exis-
tence of a uniquely determined formal power series
E(z) =14 ejx + ... such that

i) )
P (L) Py, (1,2) E(z)

Thus, a(z) can be written as

k—1
a(r) = H Pnﬁn(l’x)El(?p(E‘:)))’
n=1

where E(z) and P, 4, (s, x) are uniquely determined
for 1 < n < k. From Lemma 3.8 it follows
that there is exactly one vector of parameters of
P(s,x) := [["Z1 P, (s, 2), namely (ki,...,Kx_1),

hence
E(r(s,x))

E(x)
is also uniquely determined by a(z). It is a solution

of (Col), and it satisfies the boundary condition,
which finishes the proof. |

a(s,x) := P(s,x)

Summarizing, we found the following result: To any
given formal power series a(z) of order 0 and any
analytic iteration group 7 of the second type, there
exist solutions

a(s,z) = e’ P(s,x) (15)
of (Col) with E(z) = 14+e1z+. .. which also satisfy
the boundary condition «a(1,z) = a(z).

Theorem 3.11. Assume that ™ is an analytic it-
eration group of the second type. Let a(x) and b(x)
be given formal power series, orda(x) = 0, and let
a be a solution of (Col) of the form (15) which
satisfies the boundary condition (B2).

1. If ag # 1, then there exists exactly one

B(s,x) = el P(s,z)E(n(s,x))
F(n(s,z))

F(x)—e# Ps.7)

which satisfies together with o the cocycle
equation (Co02) and the boundary condition

B(1,2) = bla).

2. Assume that ag = 1. If a(z) =1, let my = k,
otherwise let mg be the smallest element in
{n € N|a, # 0}, and let ny := min {mg, k}.

a) First we assume that « is a solution of (Col)
with p # 0.

If ng = k, then there exist families 3 of the
above form with P(s,x) = 1 which satisfy to-
gether with o the cocycle equation (Co2) and
the boundary condition 3(1,z) = b(z) if and
only if b, =0 for all 0 < n < k. However, 3
s not uniquely determined.

Ifng < k—1, or [no =k—1 and kKp_1—ncg #
0 for alln € N] , then there exists a family 3 of
the above form, which satisfies together with o
the cocycle equation (Co2) and the boundary
condition B(1,z) = b(x), if and only if by, =0
for all 0 < n < ng. If B exists, then it is
uniquely determined.

If ng = k—1 and kKx_1 = nici for ng € N,
then there exists a family B of the above form
which satisfies together with o the cocycle
equation (Co2) and the boundary condition
B(1,x2) = b(x), if and only if b, = 0 for all
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0 <n < ng and by, +r—1 satisfies a condition
which is implicitly given in the proof. How-
ever, (3 is not uniquely determined.

b) Finally we assume that o is a solution of
(Col) with p = 0.
Ifng =%k, orng <k—1 or [nozk‘—l and
Kr—1 — ncg # 0 for all n € N], then there
exists exactly one family 3 of the form

B(s,x) = P(s,x)E(m(s,x))
: [F(x) - W +Q(s, @]
where

no—1

(5,2) Z/ "”” 733))610

which satisfies together with o the cocycle
equation (Co2) and the boundary condition

B(1,x) = b(x).

If ngo =k —1 and kr_1 = nicg for ny € N,

then there exists a family B(s,z) of the form
F(n(s,z))

Blr(s,2)P(s.z) | Fla) =+ )

s ni+k—1
g// 7T(O', .'E) d
+Q( ) ni-+no /0 P(O’,l‘) o

which satisfies together with « the cocycle
equation (Co2) and the boundary condition
B(1,x2) = b(x). However, (3 is not uniquely
determined.

Proof. Writing 3 as indicated in the first part of this
theorem, the condition b(x) = (1, ) is equivalent
to

b(x)
E(p(x))

From the proof of Theorem 3.6, we know that

= Z enx”™ + Z <(n —k+ 1)en—gyick

n>0 n>k

+ Rn_k+1)x" = Z enx™ mod zF.

n>0

=el'P(l,z)F(x) — F(p(x)). (16)

If we denote b(x)/E(p(x)) by >_,>¢ bpx", then

Z bpa" | E(p(x)) = Z bpz™.

n>0 n>0

Hence,

Z bz = Z (Zn: Eren_T> z" mod z*,

n>0 n>0 \r=0
and the coefficients by, are uniquely determined by
the b, for 0 <n < k.
Using the notation of Lemma 3.8 for the co-
efficients of P(s,x), condition (16) can be written

as
Z bnx"
n>0
an(l)xn Z faz" | — Z falp(@)]" =
n>0 n>0 n>0
el Z (Zpr(l)fn—r> " — Z fnxn
n>0 \r=0 n>0

- Z ((n—k+1)fokr10k + Spkt1) 2",

n>k

where Sy, _k+1(fo, ..., fn—k) are universal polynomi-
als in fo,..., fn_k. Comparing coefficients yields

~n—e (fn“‘ZPT ) fre r) — fn (17)

r=1
for 0 <n < k, and

bn =el (fn + Zpr(l)fn—r> - fn (18)

- (7’L —k+ 1)fn—k+1ck - Sn—k+1

for n > k.
In case 1 we assume that ag = e % 1. Then
w# 0, and f, is uniquely determined by

Bn —et 2?21 pr(l)fn—r

et —1

fn:

for 0 < n < k, and
-1 (I;n - e# Zp'r(l)fn—'r
r=1

+(n—k+1)fr—prick + Sn—k+1>

fn = (e —

for n > k.
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In case 2 we assume that ag = e = 1 and
i # 0. From the definition of ng we deduce that
kn = 0 for 1 < n < ng, and by Lemma 3.8 also
pn(s) = 0 for 1 < n < ng. If moreover ny < k,
then pp,(s) = knys and kp, # 0. For n = 0 we
deduce that 50 = (0 and recursively En = 0 for all
1 <n < ng. Hence, b, =0 for 0 < n < nyg.

Case 2.1: If ng=k, thena; =---=ap_1 =0
and according to Theorem 3.6 there exists a family
a of the form (15) satisfying (Col) and (B2) with
P(s,z) = 1. Thus, (16) reduces to

b(x)
E(p(x))

Introducing coefficients, this is

Z(N)nxn = anl_n - anxn

— F(x) - F(p(a)).

n>0 n>0 n>0
- Z ((n —k+ 1) fokpicke + 5n—k:+1)iv"-
n>k
Hence,
Z bpa” = — Z ((n—k+1)fn—k+16k+5n—k+1)93”-
n>0 n>k

By comparing coefficients we get b, = 0 for 0 <
n < k and

bn = ((TL —k+ 1)fn7k+1ck + Snkarl)

for n > k. This formula allows to compute f,_xi1
recursively for n > k, whence f, are uniquely de-
termined for n > 1, whereas fy is not determined
and can be chosen arbitrarily in C.

Case 2.2: If ng < k, then (17) means

l;n = Z pr(l)fn—r = ’inofn—no + Z pr(l)fn—r

r=ng r=ng+1

for ng < n < k. Hence, f,—p, is uniquely deter-
mined by

bn, — Z;}:no—i-l pr(1) fn—r

Rng

fn—no -

for ng <n < k.

Finally, assume that n > k. Case 2.2.1: If
no < k—1 (which is equivalent to n—ngy > n—k+1),
then from (18) we deduce that b, equals

> pe@)faor = (0= k4 1) fopy1ck — Snopa,

r=ng

whence
n

bn— Z pr(l)fn—r

r=nog+1
+(n—k+1)faokt1¢k + Sn—k+1,

Rng fn—no -

which allows to determine f,_,, for n > k.
Case 2.2.2: If ng = k — 1, then

Bn - kalfnkarl + Zpr(l)fn—r

r=k
—(n—k+1)fo—ky1ck — Sn—k+1
= (kp—1 — (n—k + 1)ck) fo—kt+1

n

+ Zpr(l)fnfr - Sn—k:—H-

r=k

Case 2.2.2.1: If k1 # mcy for all m € N,
then f,,_x+1 is uniquely determined by

Bn - Z:L:k; pr(l)fn—r + Sn—k—l—l
Kp—1—(n—k+ 1)cg

Fakir = (19)
for all n > k.

Finally in the case 2.2.2.2 we deal with the
computation of f, for n > k, where ag =1, u # 0,
ng =k —1, and kp_1 = nicg for n; € N. Then for
n = n1+k—1, which is equivalent ton—k+1 = nq,
we get

ni+k—1

Bnﬁ—k—l = Z pr(l)fnl—i-k—l—r - Snl- (20)
r=k

This is a necessary condition for Bn1+k71 in order
to guarantee that 3(s,z) can be adjusted to (B2).
Hence, b,,1r—1 must satisfy a corresponding con-
dition. If it is satisfied, then the coeflicient f,, of
F(z) can be chosen arbitrarily in C, and the coef-
ficients f,_k4+1 for n > kand n # n; + k — 1 are
uniquely determined by (19).

Case 3: Now we assume that ag = 1
and 4 = 0. The general solution [(s,z) of
(Co2) is given at the beginning of 2.b) in the
present theorem. Let Q(s, ) denote the product
P(s,z)E(n(s,x))Q(s,z). It is easy to prove that

no—1

Q(s,z) = Z lpsz™ mod £

n=0

where 0, = ¢,, + Zn(lo, ... ln_1) with polynomials
Zp in ¢;. From Theorem 2.8 it follows that Q(s, )
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is a solution of (Co2). From b(z) = B(1,z), we
deduce that En = b, for 0 < n < ng. If we put
5(s,z) = B(s,z) — Q(s,z), then &(s,z) is also a
solution of (Co2) with ordd(s,z) > ng. It can be
expressed as

P(s,2)E(r(s, z)) [F(m) _ W] .

The coefficients ¢, of Q(s,x) are uniquely deter-
mined by b(z). In order to satisfy (B2) we have to
find a series F'(x), determining d(s, z), such that

no—1

0(1,2) = b(x) — Y bpa'
n=0

Similar as in case 2 it follows that for ng < k — 1
or [no =k —1 and ki1 # ncg for all n € N]
there exists exactly one family & which satisfies to-
gether with « the cocycle equation (Co2) and the
boundary condition from above. Thus, ((s,x) =
(s, ) + Q(s, ) is uniquely determined.

If ng = k, then similarly to case 2 only the
coefficient fp of the series F'(x) is not uniquely de-
termined. But since pu = 0, this coefficient does
not influence §. Hence also in this situation § and
consequently 3 are uniquely determined.

Finally, if ng = k — 1 and kp_1 = nic for
n1 € N, then according to the last part of Theorem
2.8 we are allowed to add

E(n(s,z))P(s, )l

n1+no

s ni—+no
[,
0 P(O’,ZL‘)

to the general solution 3(s,x), where £ ., is an
arbitrary complex number. By doing this it is possi-
ble to skip the additional condition (20) for I;nﬁk,l
which occurred in case 2.2.2.2. In order to compute
the integral from above we derive

71.(07 l,)erno —

gL (g k= 1) epoa™ 2D

and
(o, z)MTro

P(o,z)

gl (ng 4k — Degoz™ P21 4
1+ Kkp_joxk=1 4+ ...

2R (g 4k — 1) e — kg )oz™ 2D

hence

s n1+no
[T,
0 P(U7 $)

_ nocC, _
sy Tk 1+782xn1+2(k 1)_|_.___

Consequently, for s = 1 we get

1 ni1+ng
/ 77T(U’ ?) do =
0

P(1,z)0! Plo.)

n1+no

ni1+k—1 ni+k

Oy 1 mod x

We indicate this formal power series by

Z qnz",

n>n1+k—1

thus gny k-1 =05 111
For k < n < n; 4+ k — 1 the coefficient f,,_ i1
is uniquely determined by (19). Forn =n; +k—1
we determine £ ., by
1

ni+k—1

;;l'i'k_l = l;nl"'k_1 - Z pT‘(]‘)fnl—l-k‘—l—r + Snl
r=Fk

and f,, can be chosen arbitrarily in C. Finally, for
n > ni + k — 1 the coefficients f, 1 is uniquely
given by

Bn - Z?:k pr(1>fn—r + Snkarl — qn

Jnter1 = Kp—1—(n—k+ 1)cg

In the case ag = 1, the condition b, = 0 for
all 0 < m < ng is also a necessary condition for
the existence of a solution ¢(x) of (L). This fact is
shown in the next

Lemma 3.12. Let p(x) = x +cpab +... fork > 2
and ¢, # 0, and assume that a(x) = 1 (then set
mo = k) or a(x) =1+ amez™ + ... for 1 < myg
and am, # 0. If p(z) € C[x] is a solution of (L),
then by, =0 for 0 < n < ng := min {mog, k}.

Proof. Elementary computations yield

e(p(z)) = enlp(@)]” =

n>0

Z on(z" +nepa R4 ) =
n>0
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Z onz™ mod z*,

n>0

and

a(@)p(x) + b() = 3 (Z @ fnr + b )

n>0

Z (Son + Z CrPn—r + bn) "

n>0 r=mqg

Hence, comparing coefficients of ™ on the left and
on the right side of (L) yields

(Pn:SOn‘i‘bn

for 0 < n < ng, thus b, = 0. |

4. Solution of the problem of covariant em-
beddings in certain special cases

In this section we give in Theorem 4.1 a necessary
condition that a given linear functional equation
(L) (with a non-empty set of solutions) has an em-
bedding with respect to a given analytic iteration
group of p(z). In Corollary 4.2 we present, as a con-
sequence, a rather large class of such embeddings.
However, there remain some special cases of solu-
tions (a,3) of the system ((Col),(C02)) and the
boundary conditions corresponding to (L) where
the existence of an embedding is still open.

Theorem 4.1. Assume that the linear functional
equation (L) has a solution ¢(x) € C[x], and let
(m(s,2))sec be an analytic iteration group of p(x).
Furthermore, assume that « satisfies (Col) and the
two boundary conditions (B1) and (B2). If there
exists exactly one [ which also satisfies (B1) and
(B2), such that (o, 3) is a solution of (Co2), then
there exists an embedding of (L) with respect to the
iteration group (mw(s,x))sec-

Proof. Let ¢ be a solution of (L). Then ®,(s,x)

defined by

Dy (s,2) 1= p(m(s,x)) — als, ) p(x)
satisfies both ®,(0,2) = ¢(x) — lp(z) = 0 and
B,(1,2) = p(p(r)) — a(2)p(z) = b(x). Further-

more, the pair (o, ®,) satisfies (C02), since

Py (t+s,2) =@t +s,2) —alt+s,z)p(x) =

o (n(t,m(s,2))) — als,2)a(t, (s, 2))p(z) =
Dot 7(s,2)) + alt, w(s,2))p((s, )
—a(s,2)alt,7(s, 2))p(x) =
O, (t,m(s,x)) + aft, m(s,z))
[By(s,2) + als, )¢ ()

O, (t,m(s,x)) + aft, (s, x))Py(s, x).

—afs, x)p(z)] =

In other words, @, satisfies the same conditions as
B, i.e., (B1), (B2) and together with a the cocycle
equation (C02). Hence, since there exists exactly
one ( with these properties, ®,(s,z) = f(s,x) for
all s € C and all solutions ¢(x) of (L). [ |

Combining this result with Theorem 3.5 and
Theorem 3.11, we get

Corollary 4.2. If n(s,z) = e’z is an analytic it-
eration group of the first type, and e is not a com-
plex root of 1, then there exists an embedding of (L)
with respect to the iteration group .

Assume that (s, z) = x+cpsxF+... withk > 2
and cx # 0 is an analytic iteration group of the sec-
ond type. If ag # 1, then there exists an embedding
of (L) with respect to the iteration group m. Assume
thatag = 1. If ng < k—1, orng =k, or [no =k-1
and ax_1 # neg, for alln € N] , then there exists an
embedding of (L) with respect to the iteration group
.

If p(x) = pr+cox®+. .., where p # 1 is a com-
plex root of 1, and p(x) does not have an embedding
in an analytic iteration group, then there exists no
covariant embedding of the linear functional equa-
tion. If p(z) has an embedding, then it is still open
whether there exists a covariant embedding of (L).
In addition to this the embedding problem is also
still open for analytic iteration groups 7 of the sec-
ond type, when 7 (s, z) = x4cpsz¥ +... with k > 2
and ¢ # 0 and a(z) = 1 + ap_12" 1 + ... with
ai—1 = nicy, for ng € N.
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