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Let a(x), b(x), p(x) be formal power series in the indeterminate x over C (i.e., elements of the
ring C [[x]] of such series) such that ord a(x) = 0, ord p(x) = 1 and p(x) is embeddable into an
analytic iteration group (π(s, x))s∈C in C [[x]]. By a covariant embedding of the linear functional
equation

ϕ(p(x)) = a(x)ϕ(x) + b(x), (L)

(for the unknown series ϕ(x) ∈ C [[x]]) with respect to (π(s, x))s∈C we understand families
(α(s, x))s∈C and (β(s, x))s∈C with entire coefficient functions in s, such that the system of
functional equations and boundary conditions

ϕ(π(s, x)) = α(s, x)ϕ(x) + β(s, x) (Ls)
α(t+ s, x) = α(s, x)α(t, π(s, x)) (Co1)
β(t+ s, x) = β(s, x)α(t, π(s, x)) + β(t, π(s, x)) (Co2)

α(0, x) = 1 β(0, x) = 0 (B1)
α(1, x) = a(x) β(1, x) = b(x) (B2)

holds for all solutions ϕ(x) of (L) and for all s, t ∈ C. In this paper we solve the system
((Co1),(Co2)) (of so called cocycle equations) completely, describe when and how the boundary
conditions (B1) and (B2) can be satisfied, and present a large class of equations (L) together
with iteration groups (π(s, x))s∈C for which there exist covariant embeddings of (L) with respect
to (π(s, x))s∈C.

1. Introduction

Let C [[x]] be the ring of formal power series in the
indeterminate x with complex coefficients. Con-
sider the linear functional equation

ϕ(p(x)) = a(x)ϕ(x) + b(x), (L)

where p(x), a(x), b(x) ∈ C [[x]] are given formal
power series and ϕ(x) ∈ C [[x]] should be determined
by the functional equation. We always assume that

p(x) = ρx+ c2x
2 + c3x

3 + · · · = ρx+
∑
n≥2

cnx
n

1
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with multiplier ρ 6= 0, and

a(x) = a0 + a1x+ a2x
2 + · · · =

∑
n≥0

anx
n

with a0 6= 0. For a foundation of the basic cal-
culations with formal power series we refer the
reader to [Henrici, 1974] and to [Cartan, 1963] or
[Cartan, 1966]. If ψ(x) ∈ C [[x]] is of the form
ψ(x) =

∑
n≥k dnx

n with dk 6= 0, then k is the or-
der of ψ, which will be indicated as ordψ(x) = k.
Hence, ord p(x) = 1 and ord a(x) = 0. The set of
all formal power series of order 1 is indicated by Γ,
which is a group with respect to the substitution in
C [[x]]. In addition to this, let Γ0 indicate the set of
all formal power series of the form x+d2x

2+· · · ∈ Γ.
Furthermore, the notion of congruence modulo

xr will be useful. We write ϕ ≡ ψ mod xr for formal
power series ϕ(x), ψ(x) ∈ C [[x]] if xr is a divisor of
the difference ϕ(x) − ψ(x). In other words ϕ(x) −
ψ(x) = 0, or its order is greater than or equal to r.

A formal power series ϕ(x) can be substituted
into the series ψ(x) =

∑
n≥0 dnx

n ∈ C [[x]], i.e., the
series ψ(ϕ(x)) =

∑
n≥0 dn[ϕ(x)]n can be computed,

if and only if ordϕ(x) ≥ 1.
The exponential series is given as

exp(x) =
∑
n≥0

xn

n!
,

and the formal logarithm is the series defined by

ln(1 + x) =
∑
n≥1

(−1)n−1xn

n
.

A family π := (π(s, ·))s∈C in Γ is called an it-
eration group, (see e.g. [Scheinberg, 1970]), or a
one-parameter group in Γ, if the translation equa-
tion

π(t+ s, x) = π(t, π(s, x)) (T )

holds for all t, s ∈ C. Hence, π(0, x) = x and
π(−1, x) = π−1(1, x), the inverse of π(1, x) with
respect to substitution. If we express π(s, x) in the
form

∑
n≥1 πn(s)xn, then π is called an analytic it-

eration group if all the coefficient functions πn(s)
are entire functions.

The formal power series p(x) is called (analyt-
ically) iterable, or embeddable, if there exists an
(analytic) iteration group π in Γ such that π(1, x) =
p(x).

There exist only three different types of ana-
lytic iteration groups in Γ.

1. π(s, x) = x for all s ∈ C.

2. π(s, x) = S−1(eλsS(x)) for all s ∈ C, where
λ ∈ C\{0} and S(x) = x+s2x

2 + . . . belongs
to Γ0. These iteration groups are called iter-
ation groups of the first type. Each iteration
group of this type is simultaneously conjugate
to the iteration group (eλsx)s∈C.

3. π(s, x) = x + cksx
k + P

(k)
k+1(s)x

k+1 + . . . for

all s ∈ C, where ck 6= 0, k ≥ 2 and P
(k)
r (s)

are polynomials in s for r > k. These itera-
tion groups are called iteration groups of the
second type.

The formal power series p(x) = x can trivially
be embedded into an analytic iteration group. As-
sume p(x) 6= x and p(x) = ρx + c2x

2 + . . . , where
ρ 6= 0. If ρ is not a complex root of 1, then let λ be
a logarithm ln ρ. In this case there exists exactly
one analytic embedding (π(s, x))s∈C of p(x) such
that π(s, x) = eλsx + . . . . Let S(x) = x + s2x

2 +
. . . be the unique formal power series such that
S(π(1, S−1(x))) = ρx, then π(s, x) = S−1(eλsS(x))
for all s ∈ C.

If ρ is a complex root of 1 and ρ 6= 1, then the
series p(x) need not have an analytic embedding.
But if such a p(x) has an analytic embedding, then
it is of the first type. In this situation, however, the
embedding need not be unique.

If p(x) = x + ckx
k + . . . with ck 6= 0 and

k ≥ 2, then there exists exactly one analytic em-
bedding of p(x) in an iteration group of the second
type. (These facts about analytic iteration groups
in C [[x]] can also be deduced as special cases of the
results in [Reich & Schwaiger, 1977].)

Assume that a(x), b(x), and p(x) are formal
power series given as above. For n ∈ Z we form the
natural iterates of p(x) defined by

pn(x) :=


x, n = 0
p(pn−1(x)), n > 0
(p−1)−n(x), n < 0.

Furthermore, for n ≥ 0 we define

α(n, x) :=
n−1∏
r=0

a(pr(x))

and

β(n, x) := α(n, x)
n−1∑
r=0

b(pr(x))∏r
j=0 a(pj(x))

.
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Then the conditions

α(0, x) = 1 β(0, x) = 0 (B1)
α(1, x) = a(x) β(1, x) = b(x) (B2)

are clearly satisfied.

Lemma 1.1. The two families (α(n, x))n∈N0 and
(β(n, x))n∈N0 satisfy

α(n+m,x) = α(m,x)α(n, pm(x)) (C1)

β(n+m,x) = β(m,x)α(n, pm(x)) + β(n, pm(x))
(C2)

for all n,m ≥ 0.

We leave the proof by induction to the reader.
If for n < 0 we define

α(n, x) :=
1

α(−n, pn(x))
=

1∏−n−1
r=0 a(pr+n(x))

=
1∏−1

r=n a(pr(x))

and

β(n, x) :=
−β(−n, pn(x))
α(−n, pn(x))

= −α(n, x)β(−n, pn(x)),

then Lemma 1.1 holds for all n,m ∈ Z.

Lemma 1.2. If ϕ(x) satisfies (L), then it also sat-
isfies

ϕ(pn(x)) = α(n, x)ϕ(x) + β(n, x) (Ln)

for all n ∈ Z.

Proof. Obvious from Lemma 1.1 and its generaliza-
tion for all n ∈ Z.

Motivated by (Ln), (C1), and (C2) for natural
iterates, L. Reich introduced in [Reich, 1998] the
following notion.

The linear functional equation (L) has a covari-
ant embedding with respect to the analytic iteration
group (π(s, x))s∈C of p(x), if there exist families
(α(s, x))s∈C and (β(s, x))s∈C of formal power series
with entire coefficient functions αn(s) and βn(s) for
all n ≥ 0 such that

ϕ(π(s, x)) = α(s, x)ϕ(x) + β(s, x) (Ls)

holds for all s ∈ C and for all solutions ϕ(x) of
(L) in C [[x]]. Moreover, it is assumed that α and β
satisfy both the boundary conditions (B1) and (B2)
and the cocycle equations

α(t+ s, x) = α(s, x)α(t, π(s, x)) (Co1)

β(t+ s, x) = β(s, x)α(t, π(s, x)) + β(t, π(s, x))
(Co2)

for all s, t ∈ C.
Such embeddings were studied in a much more

general setting by Z. Moszner in [Moszner, 1999]
and for real-valued functions by G. Guzik in
[Guzik, 1999], [Guzik, 2000], and [Guzik, 2001].
For the theory of linear functional equations we
refer the reader to [Kuczma et al., 1990] and to
[Kuczma, 1968]. In the present paper we deal with
the problem of covariant embeddings in the ring of
formal power series C [[x]]. In Section 2 we solve the
underlying functional equations (Co1) and (Co2)
completely. Then in Section 3 we show how to ad-
just these solutions to given boundary conditions.
And finally, in the last section we describe how
to embed the linear functional equation (L) in the
generic cases.

When dealing with analytic iteration groups
(π(s, x))s∈C of the first type, it is enough to con-
sider π(s, x) = eλsx. This is explained in the next

Theorem 1.3. Let π(s, x) = S−1(eλsS(x)) for
λ 6= 0 and S(x) ∈ Γ0 be an embedding of p(x).

1. The formal power series ϕ(x) is a solution of
(L) if and only if ϕ̃ := ϕ ◦ S−1 satisfies

ϕ̃(eλy) = ã(y)ϕ̃(y) + b̃(y) (L̃)

where ã := a ◦ S−1 and b̃ := b ◦ S−1.

2. The system (Ls), (Co1), (Co2), (B1), and
(B2) is equivalent to the system

ϕ̃(eλsy) = α̃(s, y)ϕ̃(y) + β̃(s, y) (L̃s)

α̃(t+ s, y) = α̃(s, y)α̃(t, eλsy) (C̃o1)

β̃(t+ s, y) = β̃(s, y)α̃(t, eλsy) + β̃(t, eλsy)
(C̃o2)

α̃(0, y) = 1 β̃(0, y) = 0 (B̃1)

α̃(1, y) = ã(y) β̃(1, y) = b̃(y), (B̃2)

where α̃(s, y) = α(s, S−1(y)) and β̃(s, y) =
β(s, S−1(y)).
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Proof. The formal series ϕ(x) satisfies (L) if and
only if

ϕ(S−1(eλS(x))) = a(x)ϕ(x) + b(x) ⇐⇒

(ϕ ◦ S−1)(eλS(x)) =

(a ◦ S−1)(S(x))(ϕ ◦ S−1)(S(x)) + (b ◦ S−1)(S(x)),

which is equal to (L̃) after replacing S(x) by y.
Assuming that (Ls) holds we deduce

ϕ(S−1(eλsS(x))) = α(s, x)ϕ(x) + β(s, x) =⇒

(ϕ ◦ S−1)(eλsS(x)) =

α(s, S−1(S(x)))(ϕ ◦ S−1)(S(x)) + β(s, S−1(S(x))),

which is equal to (L̃s) after replacing S(x) by y.
The boundary conditions (B̃1) and (B̃2) are natu-
rally equivalent to (B1) and (B2). Finally,

α̃(t+ s, y) = α(t+ s, S−1(y)) =

α(s, S−1(y))α(t, π(s, S−1(y))) =

α̃(s, y)α(t, S−1(eλsS(S−1(y)))) =

α̃(s, y)α(t, S−1(eλsy)) = α̃(s, y)α̃(t, eλsy),

hence (C̃o1) is satisfied. Using similar methods, it
is possible to show that (C̃o2) is a consequence of
(Co2).

Since (π(s, x))s∈C and (eλsx)s∈C are conjugate
via the formal power series S(x), it is clear how to
prove the implications into the converse direction.

2. Solutions of the cocycle equations

Lemma 2.1. Let E(x) := e0 + e1x + · · · ∈ C [[x]],
e0 6= 0, and let µ ∈ C. Then

α(s, x) = eµsE(π(s, x))
E(x)

is a solution of (Co1).

Proof. Since π satisfies the translation equation
(T ), it is clear that

α(t+ s, x) = eµ(t+s)E(π(t+ s, x))
E(x)

=

eµteµsE(π(t, π(s, x)))
E(x)

=

eµtE(π(t, π(s, x)))
E(π(s, x))

eµsE(π(s, x))
E(x)

=

α(t, π(s, x))α(s, x).

Lemma 2.1 also holds, when eµs is replaced by a
generalized exponential function.

If we express α(s, x) with coefficient functions
in the form

α(s, x) =
∞∑

n=0

αn(s)xn,

then it follows from the cocycle equation (Co1)
that α0(t + s) = α0(s)α0(t). Hence, taking into
account the regularity conditions for the coeffi-
cients of α and the fact that α0(s) 6= 0, it is clear
that α0(s) = eµs for some µ ∈ C. Consequently,
α(s, x) = eµsα̂(s, x) and α̂(s, x) = 1 + α̂1(s)x+ . . . .
Using the formal logarithm, there exists exactly one
α̃(s, x) ∈ C [[x]] such that ord α̃(s, x) ≥ 1 for all
s ∈ C, and α̂(s, x) = exp(α̃(s, x)). The coefficient
functions of α̃ are analytic if and only if the coeffi-
cient functions of α̂ are analytic, which is equivalent
to the fact that the coefficient functions of α are an-
alytic. Furthermore, α̂ is a solution of (Co1) if and
only if α̃ satisfies

α̃(t+ s, x) = α̃(s, x) + α̃(t, π(s, x)) (Co1′)

for all s, t ∈ C.

Theorem 2.2. The family α̃ of formal power se-
ries is a solution of (Co1′), and α̃(0, x) = 0, if and
only if there exists a formal power series K(y) ∈
C [[y]], ordK(y) ≥ 1 such that

α̃(s, x) =
∫ s

0
K(π(σ, x))dσ,

where integration is taken coefficientwise.

Proof. First assume that α̃ is a solution of (Co1′)
with α̃(0, x) = 0. Coefficientwise differentiation of
(Co1′) with respect to the variable t and the chain
rule for this differentiation yields

α̃′(t+ s, x) = α̃′(t, π(s, x)).

For t = 0 we get α̃′(s, x) = α̃′(0, π(s, x)). Since
ord α̃(s, x) ≥ 1, also ord α̃′(s, x) ≥ 1. Putting



On covariant embeddings of a linear functional equation with respect to an analytic iteration group 5

K(y) := α̃′(0, y), we obtain ordK(y) ≥ 1 and
α̃′(s, x) = K(π(s, x)). By coefficientwise integra-
tion, it follows that

α̃(s, x) =
∫ s

0
K(π(σ, x))dσ.

Conversely, assume that α̃(s, x) is given as the in-
tegral above. We prove that α̃ satisfies (Co1′):

α̃(t+ s, x) =
∫ t+s

0
K(π(σ, x))dσ =

∫ s

0
K(π(σ, x))dσ +

∫ t+s

s
K(π(σ, x))dσ =

α̃(s, x) +
∫ t

0
K(π(τ + s, x))dτ =

α̃(s, x) +
∫ t

0
K(π(τ, π(s, x)))dτ =

α̃(s, x) + α̃(t, π(s, x)),

by applying (T ). From the definition of α̃ it is ob-
vious that α̃(0, x) = 0.

Corollary 2.3. Using the notation from above, we
have:

1. The family (α̂(s, x))s∈C is a solution of (Co1)
if and only if there exists K(y) ∈ C [[y]],
ordK(y) ≥ 1 such that

α̂(s, x) = exp
∫ s

0
K(π(σ, x))dσ.

2. The family (α(s, x))s∈C is a solution of (Co1)
if and only if there exist µ ∈ C and K(y) ∈
C [[y]], ordK(y) ≥ 1 such that

α(s, x) = eµs exp
∫ s

0
K(π(σ, x))dσ.

Now we assume that α satisfies (Co1). Since
ordα(s, x) = 0, it is possible to define γ(s, x) ∈
C [[x]] by

γ(s, x) :=
β(s, x)
α(s, x)

∀s ∈ C.

The coefficient functions of γ are analytic if and
only if the coefficient functions of β are analytic.

Lemma 2.4. The families α and β satisfy the sys-
tem ((Co1),(Co2)) if and only if α satisfies (Co1),
and γ is a solution of

γ(t+ s, x) = γ(s, x) +
γ(t, π(s, x))
α(s, x)

. (Co2′)

Proof. Assume first that α is a solution of (Co1),
and α and β satisfy (Co2). Then

γ(t+ s, x) =
β(t+ s, x)
α(t+ s, x)

=
β(s, x)α(t, π(s, x)) + β(t, π(s, x))

α(s, x)α(t, π(s, x))

=
β(s, x)
α(s, x)

+
β(t, π(s, x))

α(s, x)α(t, π(s, x))

= γ(s, x) +
γ(t, π(s, x))
α(s, x)

.

Assuming conversely that α is a solution of (Co1)
and γ is a solution of (Co2′), we get

β(t+ s, x) = α(t+ s, x)γ(t+ s, x)
= α(s, x)α(t, π(s, x))

·
[
γ(s, x) +

γ(t, π(s, x))
α(s, x)

]
= α(s, x)γ(s, x)α(t, π(s, x))

+ α(t, π(s, x))γ(t, π(s, x))
= β(s, x)α(t, π(s, x)) + β(t, π(s, x)).

Theorem 2.5. Assume that α satisfies the cocycle
equation (Co1). Then α and β form a solution of
(Co2) if and only if there exists a series L(y) ∈
C [[y]] such that

β(s, x) = α(s, x)
∫ s

0

L(π(σ, x))
α(σ, x)

dσ,

where integration is taken coefficientwise.

Proof. First assume that α and β satisfy (Co2).
Then Lemma 2.4 implies that α and γ satisfy
(Co2′). Coefficientwise differentiation of (Co2′)
with respect to the variable t yields

γ′(t+ s, x) =
γ′(t, π(s, x))
α(s, x)

.

For t = 0 we get γ′(s, x) = γ′(0, π(s, x))/α(s, x).
Putting L(y) := γ′(0, y), we obtain γ′(s, x) =
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L(π(s, x))/α(s, x). By coefficientwise integration it
follows that

γ(s, x) =
∫ s

0

L(π(σ, x))
α(σ, x)

dσ

and

β(s, x) = α(s, x)
∫ s

0

L(π(σ, x))
α(σ, x)

dσ.

Conversely, if β is given by that formula, then

γ(t+ s, x) =
∫ t+s

0

L(π(σ, x))
α(σ, x)

dσ =

∫ s

0

L(π(σ, x))
α(σ, x)

dσ +
∫ t+s

s

L(π(σ, x))
α(σ, x)

dσ =

γ(s, x) +
∫ t

0

L(π(τ + s, x))
α(τ + s, x)

dτ =

γ(s, x) +
∫ t

0

L(π(τ, π(s, x)))
α(s, x)α(τ, π(s, x))

dτ =

γ(s, x) +
γ(t, π(s, x))
α(s, x)

.

In other words, α and γ satisfy (Co2′), hence by
Lemma 2.4 α and β satisfy (Co2).

Now we describe a different representation of
the general solution of (Co1) and of the system
((Co1),(Co2)), involving as few integrals as possi-
ble. In Lemma 2.1 we already derived solutions α of
(Co1) which could be represented without integrals
at all. Their form is a motivation for the represen-
tation of the general solution of (Co1) we have in
mind here. In the first part of Lemma 2.7 we, sim-
ilarly, present a class of solutions of ((Co1),(Co2))
which are free of integrals. This motivates the rep-
resentation of the general solution of ((Co1),(Co2))
and will be applied in the proof of the form of the
general solution. In this context it is necessary and
helpful to distinguish between the different types of
iteration groups (π(s, x))s∈C, and also to consider
certain special cases of µ and of (µ, λ), if iteration
groups of the first type are used. In particular, we
investigate under which conditions the solutions can
be expressed without integrals. Theorem 2.6 sum-
marizes our results concerning (Co1), Theorem 2.8
the results concerning the system ((Co1),(Co2)).
The above mentioned form of the general solutions
will be useful in solving the boundary conditions.

Theorem 2.6. 1. Let π(s, x) = eλsx for λ 6= 0.
Then α is a solution of (Co1) if and only if
there exist µ ∈ C and a formal power series
E(x) = 1 + e1x+ · · · ∈ C [[x]] such that

α(s, x) = eµsE(eλsx)
E(x)

.

The series E(x) is uniquely determined by α.

2. Let π(s, x) = x+cksxk +· · · ∈ C [[x]] with ck 6=
0 and k ≥ 2. If α(s, x) = eµs(1 + α̂k(s)xk +
. . . ) ≡ eµs mod xk, then α is a solution of
(Co1) if and only if there exist µ ∈ C and a
series E(x) = 1 + e1x+ · · · ∈ C [[x]] such that

α(s, x) = eµsE(π(s, x))
E(x)

.

The series E(x) is uniquely determined by α.

3. The general solution α of (Co1) for iteration
groups (π(s, x))s∈C of the second type is

α(s, x) =

eµs
k−1∏
n=1

(
exp

∫ s

0
π(σ, x)ndσ

)κn E(π(s, x))
E(x)

with κn ∈ C. The series E(x) and the con-
stants κn are uniquely determined by α.

Proof. In Lemma 2.1 we described solutions α of
(Co1) which could be expressed without integrals.
In Corollary 2.3 all solutions of this equation in in-
tegral form were determined. Combining these two
results, we investigate when

eµs exp
∫ s

0
K(π(σ, x))dσ = eµsE(π(s, x))

E(x)
(1)

holds, where E(x) ≡ 1 mod x. After applying the
formal logarithm, we have to check when∫ s

0
K(π(σ, x))dσ = Ẽ(π(s, x))− Ẽ(x)

is true for Ẽ(x) := lnE(x). Coefficientwise differ-
entiation of the last equation with respect to the
variable s yields

K(π(s, x)) =
dẼ

dy

∣∣∣
y=π(s,x)

π′(s, x), (2)
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where we used the “mixed” chain rule for this
derivation. Case 1: If (π(s, x))s∈C is an iteration
group of the first type this means

K(eλsx) =
dẼ

dy

∣∣∣
y=eλsx

λeλsx.

In this formula eλsx can be replaced by the inde-
terminate y, hence we get K(y) = λy dẼ(y)

dy . Since
ordK(y) ≥ 1 and λ 6= 0, it is possible to divide by
λy, and we end up with a differential equation

K(y)
λy

=: K̃(y) =
dẼ(y)
dy

. (3)

Assume that K̃(y) =
∑

n≥0 κ̃ny
n, then the Ansatz

Ẽ(y) =
∑

n≥1 ẽny
n leads to ẽn+1 = κ̃n/(n + 1) for

all n ≥ 0. Hence, all the coefficients en of E(x) for
n ≥ 1 and n = 0 are uniquely determined.

So far we proved that the series E is uniquely
defined by K. Next we show that each solution Ẽ
of the differential equation (3) with Ẽ(0) = 0 leads
to a solution E of (1) by setting E(y) = exp Ẽ(y).
Since Ẽ is a solution of the differential equation, it
is clear that

K(eλsx) = λeλsx
dẼ

dy

∣∣∣
y=eλsx

.

The right hand side of this equation is ∂
∂sẼ(eλsx),

hence ∫ s

0
K(eλσx)dσ = Ẽ(eλsx)− Ẽ(eλ0x)

and

eµs exp
∫ s

0
K(eλσx)dσ =

eµs exp(Ẽ(eλsx)− Ẽ(x)) =

eµs exp Ẽ(eλsx)
exp Ẽ(x)

= eµsE(eλsx)
E(x)

.

Moreover, the coefficient e0 of E(x) is equal to 1,
since E(x) = exp Ẽ(X) and ord Ẽ(x) ≥ 1, which
finishes the proof for iteration groups π of the first
type.

Case 2: If (π(s, x))s∈C is an analytic itera-
tion group of the second type, then from iteration
theory (cf. [Scheinberg, 1970] or [Reich & Schwai-
ger, 1977]) it follows that π′(s, x) = H(π(s, x)),

where H(y) := π′(s, y)|s=0 is the infinitesimal gen-
erator of π. In the present situation H(y) =
cky

k + . . . , hence ordH(y) = k, and (2) means

K(π(s, x)) =
dẼ

dy

∣∣∣
y=π(s,x)

H(π(s, x)).

After replacing π(s, x) by the indeterminate y, we
realize that ordK(y) ≥ k, since K(y) = H(y)dẼ(y)

dy .
(This, however, is equivalent to α(s, x) ≡ eµs mod
xk.) Hence, we end up with the differential equation

K(y)
H(y)

=: K̃(y) =
dẼ(y)
dy

, (4)

which, similar as in the first part of the proof, has
exactly one solution Ẽ(y) =

∑
n≥1 ẽny

n.
Finally, it remains to prove that each solution

Ẽ of this differential equation with Ẽ(0) = 0 yields
a solution E of (1). Let Ẽ be a solution of (4) with
Ẽ(0) = 0, then

K(π(s, x)) =
dẼ

dy

∣∣∣
y=π(s,x)

H(π(s, x))

=
dẼ

dy

∣∣∣
y=π(s,x)

π′(s, x) =
∂

∂s
Ẽ(π(s, x))

and

∫ s

0
K(π(σ, x))dσ = Ẽ(π(s, x))− Ẽ(π(0, x))

= Ẽ(π(s, x))− Ẽ(x).

Substitution into the exponential series and multi-
plication by eµs yields

eµs exp
∫ s

0
K(π(σ, x))dσ =

eµs exp(Ẽ(π(s, x))− Ẽ(x)) = eµsE(π(s, x))
E(x)

.

Hence, E(x) satisfies (1) and E(x) = exp Ẽ(x) ≡
1 mod x0.
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Case 2.1: From Corollary 2.3 we deduce that
the general solution α of (Co1) is given by

α(s, x) = eµs exp
∫ s

0

(
k−1∑
n=1

κnπ(σ, x)n

+
∑
n≥k

κnπ(σ, x)n

dσ
= eµs exp

(
k−1∑
n=1

κn

∫ s

0
π(σ, x)ndσ

)

· exp
∫ s

0
K̂(π(σ, x))dσ

with K̂(y) =
∑

n≥k κny
n. By Corollary 2.3

exp
∫ s

0
K̂(π(σ, x))dσ

is a solution of (Co1), and it is of the form 1 +
α̂k(s)xk + . . . , since ord K̂(y) ≥ k. Hence, by the
second part of the present theorem there exists a
unique series E(x) = 1 + e1x+ . . . such that

exp
∫ s

0
K̂(π(σ, x))dσ =

E(π(s, x))
E(x)

.

Summarizing, we found

α(s, x) =

eµs
k−1∏
n=1

(
exp

∫ s

0
π(σ, x)ndσ

)κn E(π(s, x))
E(x)

.

(We also applied the identity

(expΦ(y))κ = exp(κΦ(y)),

holding for the formal series exp and the formal
binomial series with ordΦ(y) ≥ 1.)

Lemma 2.7. Let E(x) = e0 + e1x + · · · ∈ C [[x]],
e0 6= 0, and assume that F (x) ∈ C [[x]] and µ ∈ C.

1. The series
β(s, x) =

eµsE(π(s, x))[F (x)− e−µsF (π(s, x))]

together with α given in Lemma 2.1 satisfies
(Co2) for any analytic iteration group π.

2. Assume that π(s, x) = x+ cksx
k + · · · ∈ C [[x]]

with k ≥ 2 and ck 6= 0 is an analytic itera-
tion group of the second type, and let P (s, x)
denote the series

P (s, x) :=
k−1∏
n=1

(
exp

∫ s

0
π(σ, x)ndσ

)κn

.

Then β defined by

β(s, x) = eµsP (s, x)E(π(s, x))

·
[
F (x)− e−µsF (π(s, x))

P (s, x)

]
together with α given in the third part of The-
orem 2.6 satisfies (Co2).

Proof. The families α and β satisfy (Co2) if and
only if

β(t+ s, x)− β(t, π(s, x)) = β(s, x)α(t, π(s, x))

for all s, t ∈ C. If we express β and α by E, F , π,
this is

eµ(t+s)E(π(t+ s, x))[F (x)− e−µ(t+s)F (π(t+ s, x))]

−eµtE(π(t, π(s, x)))
[
F (π(s, x))

−e−µtF (π(t, π(s, x)))
]

=

eµsE(π(s, x))[F (x)− e−µsF (π(s, x))]

·eµtE(π(t, π(s, x)))
E(π(s, x))

.

Application of (T ) together with simplification of
both sides yields

eµ(t+s)E(π(t+ s, x))F (x)

−eµtE(π(t, π(s, x)))F (π(s, x)) =

eµsF (x)eµtE(π(t, π(s, x)))

−F (π(s, x))eµtE(π(t, π(s, x))),

which is always true, since π satisfies (T ).
The proof of the second part is similar to the

proof above; the reader only has to take into ac-
count that (P (s, x))s∈C is a solution of (Co1).
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Theorem 2.8. Let α be a solution of (Co1).

1. Assume that π(s, x) = eλsx for λ 6= 0 and
that α is given as in the first part of Theorem
2.6.

If µ− nλ 6= 0 for all n ∈ N0, then (α, β) is a
solution of (Co2) if and only if there exists a
formal power series F (x) ∈ C [[x]] such that

β(s, x) = eµsE(eλsx)[F (x)− e−µsF (eλsx)].

The series F (x) is uniquely determined by α
and β.

If µ = n0λ for n0 ∈ N0, then (α, β) is a solu-
tion of (Co2) if and only if there exist a formal
power series F (x) ∈ C [[x]] and `n0 ∈ C such
that

β(s, x) =

eµsE(eλsx)[`n0sx
n0 + F (x)− e−µsF (eλsx)].

2. Let π(s, x) = x + cksx
k + · · · ∈ C [[x]] with

ck 6= 0 and k ≥ 2.

Assume that α can be expressed as in the sec-
ond part of Theorem 2.6. If µ 6= 0, then (α, β)
is a solution of (Co2) if and only if there ex-
ists a formal power series F (x) ∈ C [[x]] such
that

β(s, x) =

eµsE(π(s, x))[F (x)− e−µsF (π(s, x))].

The series F (x) is uniquely determined by α
and β.

If µ = 0, then (α, β) is a solution of (Co2) if
and only if there exist a series F (x) ∈ C [[x]]
and coefficients `0, . . . , `k−1 ∈ C such that

β(s, x) =

E(π(s, x))[F (x)− F (π(s, x)) +Q(s, x)]

where

Q(s, x) =
k−1∑
n=0

∫ s

0

`nπ(σ, x)n

E(π(σ, x))
dσ.

3. Let α be the general solution of (Co1) given
in the third part of Theorem 2.6, and assume
that

P (s, x) :=
k−1∏
n=1

(
exp

∫ s

0
π(σ, x)ndσ

)κn

actually occurs. Moreover, let n0 be the min-
imum of {n ∈ N | 1 ≤ n ≤ k − 1, κn 6= 0}.

If µ 6= 0, then (α, β) is a solution of (Co2) if
and only if there exists a formal power series
F (x) ∈ C [[x]] such that

β(s, x) = eµsP (s, x)E(π(s, x))

·
[
F (x)− e−µsF (π(s, x))

P (s, x)

]
.

The series F (x) is uniquely determined by α
and β.

If µ = 0 and
[
n0 6= k − 1, or κk−1 −mck 6= 0

for all m ∈ N
]
, then (α, β) is a solution

of (Co2) if and only if there exist a formal
power series F (x) ∈ C [[x]] and coefficients
`0, . . . , `n0−1 ∈ C such that

β(s, x) = P (s, x)E(π(s, x))

·
[
F (x)− F (π(s, x))

P (s, x)
+Q(s, x)

]
where

Q(s, x) =
n0−1∑
n=0

∫ s

0

`nπ(σ, x)n

P (σ, x)E(π(σ, x))
dσ.

The series F (x) and the coefficients `n are
uniquely determined by α and β.

If µ = 0, n0 = k − 1, and κk−1 = n1ck for
n1 ∈ N, then (α, β) is a solution of (Co2) if
and only if there exist a formal power series
F (x) ∈ C [[x]] and coefficients `0, . . . , `n0−1

and `′′n1+n0
in C such that β(s, x) equals

E(π(s, x))P (s, x) ·
[
F (x)− F (π(s, x))

P (s, x)

+Q(s, x) + `′′n1+n0

∫ s

0

π(σ, x)n1+n0

P (σ, x)
dσ

]
.

Proof. We apply similar ideas and arguments as in
the proof of Theorem 2.6. In Lemma 2.7 we de-
scribed special solutions, and in Theorem 2.5 all
solutions of (Co2) in integral form were given. If
α can be expressed without any integrals, then we
check when

α(s, x)
∫ s

0

L(π(σ, x))
α(σ, x)

dσ =

eµsE(π(s, x))[F (x)− e−µsF (π(s, x))]

(5)
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holds. This is equivalent to∫ s

0

L(π(σ, x))
α(σ, x)

dσ = E(x)[F (x)− e−µsF (π(s, x))].

Coefficientwise differentiation of the last equation
with respect to the variable s yields

L(π(s, x))
α(s, x)

= E(x)
[
µe−µsF (π(s, x))

− e−µsdF

dy

∣∣∣
y=π(s,x)

π′(s, x)
]
.

Case 1: If π is an iteration group of the first
type, this means

L(eλsx) = α(s, x)E(x)
[
µe−µsF (eλsx)

− e−µsdF

dy

∣∣∣
y=eλsx

λeλsx

]
.

Using the special form of α from the first part of
Theorem 2.6 and replacing eλsx by the indetermi-
nate y gives

L̃(y) :=
L(y)
E(y)

= µF (y)− λy
dF (y)
dy

. (6)

Assume that L̃(y) =
∑

n≥0 `ny
n, then the Ansatz

F (y) =
∑

n≥0 fny
n leads to∑

n≥0

`ny
n =

∑
n≥0

(µ− nλ)fny
n.

Case 1.1: If µ−nλ 6= 0 for all n ≥ 0, then F (y) is
uniquely given by

fn =
`n

µ− nλ
∀n ≥ 0.

So far we proved that in this situation the series
F is uniquely defined by L. Next we show that
each solution F of the differential equation (6) is a
solution of (5). Since F is a solution of (6), it is
clear that

L(y) = E(y)
[
µF (y)− λy

dF (y)
dy

]
.

After replacing y by eλsx and using the special form
of α, we derive that

L(eλsx)
α(s, x)

=

E(x)
[
µe−µsF (eλsx)− e−µsλeλsx

dF

dy

∣∣∣
y=eλsx

]
=

E(x)
∂

∂s
(−e−µsF (eλsx)).

Coefficientwise integration, finally, yields the de-
sired result.

Still we are dealing with analytic iteration
groups (π(s, x))s∈C of the first type. But now in
case 1.2 we assume that µ = n0λ. In this situ-
ation, comparing the coefficients of yn0 yields the
condition 0 = (µ − n0λ)fn0 = `n0 . If `n0 6= 0, then
we split L(y) into the form∑

n≥0
n6=n0

`ny
n + `n0y

n0 .

From Theorem 2.6 we know that β is given as

β(s, x) = α(s, x)
∫ s

0

L(eλσx)
α(eλσx)

dσ =

eµsE(eλsx)
E(x)

∫ s

0

L(eλσx)E(x)
eµσE(eλσx)

dσ =

eµsE(eλsx)
∫ s

0
e−µσ

∑
n≥0

`ne
nλσxndσ =

eµsE(eλsx)
(∫ s

0
`n0dσ x

n0

+
∫ s

0

∑
n≥0

n6=n0

e(nλ−µ)σ`nx
ndσ

)
=

eµsE(eλsx)[`n0sx
n0 + F (x)− e−µsF (eλsx)].

For n 6= n0 the coefficients fn of F (x) are uniquely
given by

fn =
`n

µ− nλ
,

whereas fn0 is not determined.
Conversely, it is left to the reader to prove that

each series F with coefficients fn = `n/(µ−nλ) for
n 6= n0 and arbitrary fn0 ∈ C is a solution of (5).

In case 2 of the present proof we assume that
(π(s, x))s∈C is an iteration group of the second type.
In case 2.1 we investigate when (5) holds. For do-
ing this, we assume that α is given as in the second
part of Theorem 2.6. Inserting the special form of
α, coefficientwise differentiation with respect to s,
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and expressing π′(s, x) as H(π(s, x)), where H is
the infinitesimal generator of π, yields the equation

L(π(s, x)) = E(π(s, x))
[
µF (π(s, x))

− dF

dy

∣∣∣
y=π(s,x)

H(π(s, x))
]
.

After replacing π(s, x) by y, we end up with the
differential equation

L̃(y) :=
L(y)
E(y)

= µF (y)− dF (y)
dy

H(y). (7)

Assume that L̃(y) =
∑

n≥0 `ny
n and H(y) =∑

n≥k hny
n, where hk = ck 6= 0, then the Ansatz

F (y) =
∑

n≥0 fny
n leads to

∑
n≥0

`ny
n = µ

k−1∑
n=0

fny
n

+
∑
n≥k

(
µfn −

∑
r+s=n

s≥k

(r + 1)fr+1hs

)
yn.

Comparing coefficients yields

`n = µfn, n < k

`n = µfn −
n−k+1∑

r=1

rfrhn−r+1, n ≥ k.

Case 2.1.1: If µ 6= 0, then F is uniquely de-
termined by

fn =
`n
µ
, n < k

fn =
1
µ

(
`n +

n−k+1∑
r=1

rfrhn−r+1

)
, n ≥ k.

Assuming conversely that F is a solution of (7), it
is left to the reader to prove that F satisfies (5).
(The proof is similar to that given in the first part
of this proof.)

Case 2.1.2: If µ = 0, then (7) reduces to

L̃(y) = −dF (y)
dy

H(y) (8)

or in more details

∑
n≥0

`ny
n = −

∑
n≥k

(
n−k+1∑

r=1

rfrhn−r+1

)
yn.

Comparing coefficients yields a necessary condition
for the coefficients of L̃, namely

`n = 0, n < k

and a formula to determine recursively the values
of fn by

fn = −
`k+n−1 +

∑n−1
r=1 rfrhk+n−r

nck
, n ≥ 1,

since hk = ck. The coefficient f0 is not determined
by (8). In conclusion, ord L̃(y) ≥ k, which implies
that ordL(y) ≥ k, and finally ordβ(s, x) ≥ k.

Assuming conversely that F is a solution of (8)
with arbitrary f0 ∈ C, it is left to the reader to
prove that F satisfies (5) for µ = 0.

If ordL(x) < k, then we get by combining the
above calculations with the integral form of the gen-
eral solution that

β(s, x) = E(π(s, x))[F (x)− F (π(s, x)) +Q(s, x)].

Case 2.2: Let α be the general solution of
(Co1) given in the third part of Theorem 2.6. Then

β(s, x) =

eµsP (s, x)
E(π(s, x))
E(x)

∫ s

0

L(π(σ, x))E(x)
eµσP (σ, x)E(π(σ, x))

dσ =

eµsP (s, x)E(π(s, x))
∫ s

0
e−µσ L̃(π(σ, x))

P (σ, x)
dσ.

First we check when

eµsP (s, x)E(π(s, x))
∫ s

0
e−µσ L̃(π(σ, x))

P (σ, x)
dσ =

eµsP (s, x)E(π(s, x))
[
F (x)− e−µsF (π(s, x))

P (s, x)

] (9)

holds. This is obviously equivalent to∫ s

0
e−µσ L̃(π(σ, x))

P (σ, x)
dσ = F (x)− e−µsF (π(s, x))

P (s, x)
.

Coefficientwise differentiation with respect to the
variable s gives

e−µs L̃(π(s, x))
P (s, x)

= − ∂

∂s
e−µsF (π(s, x))

P (s, x)
=

µe−µsF (π(s, x))
P (s, x)

− e−µs

(
∂

∂s

1
P (s, x)

)
F (π(s, x))
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−e−µs 1
P (s, x)

dF

dy

∣∣∣
y=π(s,x)

H(π(s, x)),

where H is the infinitesimal generator of π. Since

∂

∂s

1
P (s, x)

=
∑k−1

n=1(−κn)π(s, x)n

P (s, x)
,

we end up with the differential equation

L̃(y) =

(
µ+

k−1∑
n=1

κny
n

)
F (y)− dF (y)

dy
H(y), (10)

after replacing π(s, x) by y. The usual Ansatz leads
to ∑

n≥0

`ny
n = µ

∑
n≥0

fny
n

+
∑
n≥1

min{k−1,n}∑
r=1

κrfn−r

 yn

−
∑
n≥k

(
n−k+1∑

r=1

rfrhn−r+1

)
yn.

Hence, the coefficients satisfy

`0 = µf0,

`n = µfn +
n∑

r=1

κrfn−r, 1 ≤ n < k,

and

`n = µfn +
k−1∑
r=1

κrfn−r −
n−k+1∑

r=1

rfrhn−r+1

for n ≥ k. In case 2.2.1 we assume that µ 6= 0.
Then F is uniquely given by

f0 =
`0
µ
,

fn =
1
µ

(
`n −

n∑
r=1

κrfn−r

)
, 1 ≤ n < k,

and

fn =
1
µ

(
`n −

k−1∑
r=1

κrfn−r +
n−k+1∑

r=1

rfrhn−r+1

)

for n ≥ k.

Again it is left to the reader to prove that F
satisfies (9).

What happens if µ = 0, which is case 2.2.2?
If n0 denotes min {n ∈ N | 1 ≤ n ≤ k − 1, κn 6= 0},
then (10) reduces to

L̃(y) =

(
k−1∑

n=n0

κny
n

)
F (y)− dF (y)

dy
H(y).

Since the right hand side is a power series of order
≥ n0, the coefficients of L̃(y) satisfy

`n = 0, 0 ≤ n < n0,

`n =
n∑

r=n0

κrfn−r, n0 ≤ n < k,

and

`n =
k−1∑
r=n0

κrfn−r −
n−k+1∑

r=1

rfrhn−r+1

for n ≥ k.
Consequently, ord L̃(y) ≥ n0, and ordβ(s, x) ≥

n0. Hence, for n0 ≤ n < k the coefficients fn−n0

are uniquely determined by

fn−n0 =
1
κn0

(
`n −

n∑
r=n0+1

κrfn−r

)
. (11)

For n ≥ k we still have to consider different cases.
Case 2.2.2.1: If n0 < k − 1, then n − n0 > n −
k+1 and fn−n0 are uniquely given by the recursive
formula

fn−n0 =
1
κn0

(
`n −

k−1∑
r=n0+1

κrfn−r

+
n−k+1∑

r=1

rfrhn−r+1

)
.

Case 2.2.2.2: If n0 = k − 1, then for n ≥ k

`n = κk−1fn−k+1 −
n−k+1∑

r=1

rfrhn−r+1 =

(κk−1 − (n− k + 1)hk)fn−k+1 −
n−k∑
r=1

rfrhn−r+1.

(12)

The reader should remember from case 2.1 that hk

equals ck.
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Case 2.2.2.2.1: If κk−1−mck 6= 0 for all m ∈
N, then

fn−n0 = fn−k+1 =
`n +

∑n−k
r=1 rfrhn−r+1

κk−1 − (n− k + 1)ck
(13)

for n ≥ k.
Finally we have to consider in case 2.2.2.2.2

that µ = 0, n0 = k−1, and that there exists n1 ∈ N
such that κk−1 = n1ck. If n− k + 1 = n1, which is
equivalent to n = n1 + k − 1, we have

`n1+k−1 = (κk−1 − n1ck)fn1 −
n1−1∑
r=1

rfrhn1+k−r =

−
n1−1∑
r=1

rfrhn1+k−r.

This is a necessary condition for writing β(s, x) as
in the right hand side of (9) for µ = 0. In general
let

`′n1+k−1 := −
n1−1∑
r=1

rfrhn1+k−r,

then∫ s

0

L̃(π(σ, x))
P (σ, x)

dσ =
∫ s

0

1
P (σ, x)

∑
n≥k

`nπ(σ, x)ndσ =

∫ s

0


∑
n≥k

n6=n1+k−1

`nπ(σ, x)n + `′n1+k−1π(σ, x)n1+k−1

P (σ, x)

+
(`n1+k−1 − `′n1+k−1)π(σ, x)n1+k−1

P (σ, x)

 dσ =

F (x)− F (π(s, x))
P (s, x)

+ `′′n1+k−1

∫ s

0

π(σ, x)n1+k−1

P (σ, x)
dσ,

where `′′n1+k−1 = `n1+k−1 − `′n1+k−1. For n 6= n1 +
k − 1 the coefficients fn−k+1 of the series F (x) are
uniquely given by the two formulae (11) and (13),
and fn1 is not determined.

Also in the last cases it is left to the reader to
prove that each solution F of the differential equa-
tion (10) also satisfies (9) for µ = 0.

In order to finish case 2.2.2 completely, if
ordL(x) < n0, then it follows in a similar way as in
case 2.1.2 that the corresponding term Q(s, x) must
be added to obtain the general solution.

3. Solutions which satisfy the boundary
conditions

In this section we assume that (π(s, x))s∈C is a given
iteration group. We determine solutions α and β of
the cocycle equations (Co1) and (Co2) which also
satisfy the boundary conditions (B1) and (B2) for
given formal power series

a(x) =
∑
n≥0

anx
n, a0 6= 0 and b(x) =

∑
n≥0

bnx
n.

From the results of the previous section it is obvi-
ous that (B1) is always satisfied. We only have to
consider (B2) for further investigations.

First we deal with analytic iteration groups
of the first type, i.e., we consider π(s, x) = eλsx
for λ 6= 0. Before describing the solutions α
which satisfy the boundary conditions we need
a preliminary result. If J = J(λ) denotes the
set {n ∈ N | nλ ∈ 2πiZ}, then the following lemma
holds.

Lemma 3.1. Assume that J is not empty, and let
j0 be the minimum of J . Then J = Nj0.

Proof. Since j0 ∈ J , there exists z0 ∈ Z such that
j0λ = 2z0πi. Then nj0λ = 2nz0πi ∈ 2πiZ for all
n ∈ N. Hence, Nj0 is a subset of J . Conversely,
assume that n ∈ J , then by division we deduce
that n = qj0 + r with uniquely determined r such
that 0 ≤ r < j0. From 2πiZ 3 nλ = (qj0 + r)λ =
qj0λ+ rλ = 2qz0πi+ rλ it follows that rλ ∈ 2πiZ,
and consequently r = 0. Hence, n ∈ Nj0, which
finishes the proof.

In the first part of Theorem 2.6 the general solution
α of (Co1) for analytic iteration groups (π(s, x))s∈C
of the first type was described. We want to analyze
how to adjust it to the condition α(1, x) = a(x).

Theorem 3.2. Assume that a(x) is a given formal
power series of order 0.

If J = ∅, then there exists exactly one formal
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power series E(x) = 1 + e1x+ . . . such that

α(s, x) = eµsE(eλsx)
E(x)

is a solution of (Co1) which satisfies α(1, x) = a(x).
If J 6= ∅, then there exist formal power series

E(x) = 1 + e1x+ . . . such that α(s, x) of the above
form satisfies both (Co1) and the boundary condi-
tion if and only if for n ∈ J the coefficients an

satisfy

an = −
n−1∑
r=1

aren−r,

where en are the coefficients of E(x).

Proof. Writing α as indicated above, the assump-
tion α(1, x) = a(x) is equivalent to

eµ
∑
n≥0

ene
nλxn =

∑
n≥0

n∑
r=0

aren−r.

Comparing coefficients yields for n = 0 that eµ =
a0, since e0 = 1. Hence, µ is a logarithm ln a0. For
n ≥ 1 we get

eµenλen = a0en +
n−1∑
r=1

aren−r + an,

which implies

a0(enλ − 1)en =
n−1∑
r=1

aren−r + an.

For n 6∈ J the coefficient en is uniquely determined
by

en =
∑n

r=1 aren−r

a0(enλ − 1)
.

However, for n ∈ J the coefficient en is not de-
termined and actually can be chosen arbitrarily in
C, whereas an must satisfy the condition above.
We will not analyze these conditions further in the
present paper.

Before we adjust β to the condition β(1, x) =
b(x) we need another preliminary result. Let K =
K(µ, λ) denote the set {n ∈ N0 | µ− nλ ∈ 2πiZ}.
Then the following lemma holds.

Lemma 3.3. Assume that the cardinality of K is
greater than 1. Then J is not empty and

K = {k0 + nj0 | n ∈ N0} =

{n ∈ N0 | n ≡ k0 mod j0} ,

where k0 := minK and j0 := min J . If |K| = 1,
then J = ∅.

Proof. First we prove that when n1 and n2 are two
different elements of K such that n1 > n2, then
n1 − n2 belongs to J . Since n1, n2 ∈ K, there exist
z1, z2 ∈ Z such that µ−n1λ = 2z1πi and µ−n2λ =
2z2πi. Then (n1 − n2)λ = (µ− n2λ)− (µ− n1λ) =
2(z2 − z1)πi ∈ 2πiZ and n1 − n2 ∈ N. Hence n1 −
n2 ∈ J .

Since k0 ∈ K and j0 ∈ J , there exist z0, z1 ∈ Z
such that µ−k0λ = 2z0πi and j0λ = 2z1πi. Let n ∈
N0, then µ−(k0+nj0)λ = µ−k0λ−nj0λ = 2z0πi−
2nz1πi = 2(z0 − nz1)πi ∈ 2πiZ and consequently
k0 + nj0 ∈ K. Thus, k0 + N0j0 ⊆ K.

In the next step we prove that k0 < j0. (Then
it is clear that k0 + N0j0 is the set of all positive
integers congruent k0 modulo j0.) If we assume that
k0− j0 ≥ 0, then k0− j0 ∈ K since µ− (k0− j0)λ =
2(z0 + z1)πi ∈ 2πiZ. Moreover, k0− j0 < k0, which
is a contradiction to the construction of k0.

Finally, we have to prove that K ⊆ k0 + N0j0.
Let n ∈ K. If n 6= k0, then n > k0 and then there
exists z ∈ Z, such that µ − nλ = 2zπi. Moreover,
(n− k0)λ = 2(z0 − z)πi ∈ 2πiZ, thus n− k0 ∈ J =
Nj0 by Lemma 3.1. Hence, n ∈ k0 + Nj0.

If |K| = 1, then necessarily J = ∅. Because
if we assume that J 6= ∅, then J = Nj0. Hence,
k0+J ⊂ K, which is a contradiction to |K| = 1.

Let α be a solution of (Co1) where π is an an-
alytic iteration group of the first type. The general
form of β, which satisfies together with α the co-
cycle equation (Co2), was given in the first part of
Theorem 2.8.

Theorem 3.4. Let π be an analytic iteration group
of the first type. Assume that b(x) is a given formal
power series and α is a solution of (Co1) given by

α(s, x) = eµsE(eλsx)
E(x)

with E(x) = 1 + e1x+ . . . .



On covariant embeddings of a linear functional equation with respect to an analytic iteration group 15

1. If K = ∅, then there exists exactly one formal
power series F (x) such that

β(s, x) = eµsE(eλsx)[F (x)− e−µsF (eλsx)]

together with α is a solution of (Co2) satisfy-
ing β(1, x) = b(x).

2. If K 6= ∅ and µ− nλ 6= 0 for all n ∈ N0, then
there exist formal power series F (x) such that

β(s, x) = eµsE(eλsx)[F (x)− e−µsF (eλsx)]

together with α is a solution of (Co2) satisfy-
ing the boundary condition if and only if for
n ∈ K the coefficients bn satisfy

bn =
n−1∑
r=0

en−rfre
(n−r)λ(eµ − erλ), (14)

where en and fn are the coefficients of E(x)
and F (x).

3. If K 6= ∅ and µ − n0λ = 0, then there exist
formal power series F (x) and `n0 ∈ C such
that

β(s, x) = eµsE(eλsx)
[
`n0sx

n0

+ F (x)− e−µsF (eλsx)
]

together with α is a solution of (Co2) satisfy-
ing the boundary condition if and only if for
n ∈ K \ {n0} the coefficients bn satisfy (14)
for n < n0, and bn equals

n−1∑
r=0

r 6=n0

en−rfre
(n−r)λ(eµ − erλ) + `n0en−n0e

nλ

for n ∈ K and n > n0.

Proof. Writing β in the form

β(s, x) = eµsE(eλsx)[F (x)− e−µsF (eλsx)],

and assuming that there is no n0 ∈ N such that µ =
n0λ, the assumption b(x) = β(1, x) is equivalent to

∑
n≥0

bnx
n = eµ

∑
n≥0

(
n∑

r=0

en−rfre
(n−r)λ

)
xn

−
∑
n≥0

(
n∑

r=0

en−rfr

)
enλxn,

which yields for all n ≥ 0 that bn equals

n−1∑
r=0

en−rfre
(n−r)λ(eµ − erλ) + e0fne

nλ(eµ−nλ − 1).

If n 6∈ K, then fn is uniquely given by

fn =
bn −

∑n−1
r=0 en−rfre

(n−r)λ(eµ − erλ)
enλ(eµ−nλ − 1)

.

For n ∈ K the coefficient fn can be chosen arbitrar-
ily in C, and bn must satisfy

bn =
n−1∑
r=0

en−rfre
(n−r)λ(eµ − erλ).

If there is n0 ∈ N such that µ = n0λ, then
n0 ∈ K. Since in this situation

β(s, x) = eµsE(eλsx)[`n0sx
n0+F (x)−e−µsF (eλsx)],

the formulae above are only correct for n < n0.
Comparing coefficients for n ≥ n0 yields

bn =
n∑

r=0
r 6=n0

en−rfre
(n−r)λ(eµ − erλ) + `n0en−n0e

nλ.

For n = n0 the coefficient `n0 is uniquely deter-
mined by

`n0 = e−µ

(
bn0 −

n0−1∑
r=0

en0−rfre
(n0−r)λ(eµ − erλ)

)
.

Furthermore, for n > n0 and n 6∈ K, the coefficient
fn is given by the fraction

bn −
n−1∑
r=0

r 6=n0

en−rfre
(n−r)λ(eµ − erλ)− `n0en−n0e

nλ

enλ(eµ−nλ − 1)

and for n > n0, n ∈ K the coefficients bn must
satisfy the condition

bn =
n−1∑
r=0

r 6=n0

en−rfre
(n−r)λ(eµ − erλ) + `n0en−n0e

nλ.

We will not analyze these conditions further.

The importance of the next theorem will be
clear in connection with Theorem 4.1.
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Theorem 3.5. Let π(s, x) = eλsx, where ρ = eλ is
not a complex root of 1. Assume that a(x) and b(x)
are given power series, where ord a(x) = 0. Then
there exists a suitable α, which satisfies (Co1) and
the two boundary conditions, such that there is ex-
actly one β, which satisfies the boundary conditions
(B1) and (B2) and together with α also the cocycle
equation (Co2).

Proof. Since ρ is not a complex root of 1, it is ob-
vious that J = J(λ) is empty. Hence, according
to Lemma 3.3 the set K = K(µ, λ) is empty or
K has cardinality 1. In the first case everything
is clear from Theorem 3.2 and Theorem 3.4. If
K = {k0}, let µ be a logarithm of a0 and α(s, x)
be given as in Theorem 3.2. Hence, there exists
some z ∈ Z such that µ − k0λ = 2zπi. Then
µ− 2zπi = k0λ. If we replace µ by µ′ := µ− 2zπi,
then a0 = eµ = eµ

′
and µ′ = k0λ, which means that

K(µ′, λ) = {k0} and µ′ − k0λ = 0, hence k0 = n0

from the second part of Theorem 3.4. Moreover,
α′(s, x) := e(µ

′−µ)sα(s, x) is also a solution of (Co1),
which satisfies the boundary conditions. As was de-
scribed in the proof of Theorem 3.4, the coefficients
fn (for n 6= k0) and `k0 are uniquely determined.
Just fk0 can be chosen arbitrarily in C. Moreover,
the series b(x) need not satisfy any necessary con-
ditions, so also in this situation there always ex-
ists a β satisfying (Co2) and (B2). According to
Theorem 2.8, for computing β(s, x) it is necessary
to determine F (x) − e−µ′sF (eλsx). Because of the
special choice of µ′ and λ, this difference reads as∑

n≥0

fnx
n − e−µ′s

∑
n≥0

fne
nλsxn =

∑
n≥0

(1−e(−µ′+nλ)s)fnx
n =

∑
n≥0

n6=k0

(1−e(−µ′+nλ)s)fnx
n,

consequently it does not depend on the coefficient
fk0 , which still could be chosen arbitrarily. Hence,
β is uniquely determined in this situation.

Now we come back to the analytic iteration
groups of the second type, i.e., π(s, x) = x +
cksx

k + . . . with k ≥ 2 and ck 6= 0. The embed-
ding for those α, which are of the form α(s, x) =
eµs + αk(s)xk + . . . , is described in

Theorem 3.6. Assume that a(x) is a given formal
power series of order 0, and π is an analytic itera-
tion group of the second type. There exists a formal
power series E(x) = 1 + e1x+ . . . such that

α(s, x) = eµsE(π(s, x))
E(x)

is a solution of (Co1) satisfying the boundary con-
dition if and only if an = 0 for 1 ≤ n < k.

If E(x) exists, then it is uniquely determined.

Proof. In this situation again the boundary condi-
tion α(1, x) = a(x) is equivalent to a(x)E(x) =
eµE(p(x)). First we compute E(p(x)) which is
equal to∑

n≥0

en[p(x)]n =
∑
n≥0

en[x+ ckx
k + . . . ]n =

∑
n≥0

en(xn + nckx
n−1+k + . . . ) =

k−1∑
n=0

enx
n +

∑
n≥k

(
en + (n− k + 1)en−k+1ck

+Rn−k+1(e1, . . . , en−k)
)
xn,

where Rn−k+1 = Rn−k+1(e1, . . . , en−k) are univer-
sal polynomials in e1, . . . , en−k, and R1 = 0. Hence,
α satisfies the boundary condition if and only if

∑
n≥0

(
n∑

r=0

an−rer

)
xn = eµ

k−1∑
n=0

enx
n

+eµ
∑
n≥k

(en + (n− k + 1)en−k+1ck +Rn−k+1)xn.

Comparing coefficients on both sides, we derive for
n = 0 that a0 = eµ, since e0 = 1, hence µ = ln a0.
Then for 1 ≤ n < k the coefficient an = 0, since

n−1∑
r=0

an−rer + a0en = eµen

is equivalent to

an +
n−1∑
r=1

an−rer = 0.
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Hence, recursively we get

an = −
n−1∑
r=1

an−rer = 0.

Finally, for n ≥ k, write n as k + j for j ≥ 0.
Comparison of coefficients of xk+j yields

a0ek+j +
k+j∑
s=k

asek+j−s =

eµ(ek+j + (j + 1)ej+1ck +Rj+1),

which reduces to

j∑
r=0

ak+j−rer = eµ((j + 1)ej+1ck +Rj+1).

From this formula the coefficients ej+1 can uniquely
be determined by

ej+1 =
e−µ

∑j
r=0 ak+j−rer −Rj+1

(j + 1)ck
.

In order to deal with the general form of α, let
Pn,κ(s, x) be given by

Pn,κ(s, x) :=
(

exp
∫ s

0
π(σ, x)ndσ

)κ

=

exp
(
κ

∫ s

0
π(σ, x)ndσ

)
for 1 ≤ n < k. Then P (s, x) =

∏k−1
n=1 Pn,κn(s, x).

Lemma 3.7. Let (π(s, x))s∈C be an analytic itera-
tion group of the second type, κ ∈ C, and assume
that 1 ≤ n < k. Then Pn,κ(s, x) = 1 + κsxn + . . . .

Proof. Computing the first coefficients, we get

π(σ, x)n = xn + nckσx
n−1+k + . . . ,

hence
κ

∫ s

0
π(σ, x)ndσ = κsxn + . . . ,

and consequently Pn,κ(s, x) is of the given form.

Standard computations can be used in order to
prove

Lemma 3.8. Writing the series P (s, x), which is
the product

∏k−1
n=1 Pn,κn(s, x), in the form

P (s, x) =
∑
n≥0

pn(s)xn,

then

pn(s) =


1, n = 0
κ1s, n = 1
κns+ qn(κ1, . . . , κn−1, s), 2 ≤ n < k

where qn(κ1, . . . , κn−1, s) is a polynomial in κ1, . . . ,
κn−1 and s. From this explicit form of pn(s) for
1 ≤ n < k it is possible to determine the vector
of parameters (κ1, . . . , κk−1) of a given polynomial
P (s, x) in a unique way.

Already at the very beginning of this article we
realized that α0(s) = eµs, hence α0(1) = eµ = a0.
Consequently, it is enough and also easier to adjust
α̂(s, x) := e−µsα(s, x) to the boundary condition
α̂(1, x) = â(x) := e−µa(x). The main idea is for-
mulated in the next

Lemma 3.9. Let â(x) = 1 +
∑

n≥n0
ânx

n for 1 ≤
n0 < k. Then there exists exactly one Pν,κ(s, x)
such that

â(x)
Pν,κ(1, x)

≡ 1 mod xn0+1.

Proof. When we choose ν = n0 and κ = ân0 , then it
is clear from Lemma 3.7 that â(x) ≡ Pν,κ(1, x) mod
xn0+1. In order to prove that Pν,κ(s, x) is uniquely
defined, assume that there exists a series Pν′,κ′(s, x)
such that â(x) ≡ Pν′,κ′(1, x) mod xn0+1, then
ord(â(x)−Pν′,κ′(1, x)) ≥ n0 +1. Hence, Pν′,κ′(1, x)
starts with 1 + ân0x

n0 . Consequently, ν ′ = n0 =
ν and κ′ = ân0 = κ by Lemma 3.7. Hence,
Pν′,κ′(s, x) = Pν,κ(s, x).

From this lemma it is obvious that

â(x) ≡ Pn0,ân0
(1, x) mod xn0+1.

Now we can adjust the general solution α given
in the last part of Theorem 2.6 to the boundary
condition.
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Theorem 3.10. Let â(x) = 1 +
∑

n≥1 ânx
n be a

given formal power series of order 0, and assume
that π is an analytic iteration group of the second
type. Then there exists exactly one solution

α̂(s, x) = P (s, x)
E(π(s, x))
E(x)

of (Co1) with E(x) = 1 + e1x+ . . . which also sat-
isfies the boundary condition α̂(1, x) = â(x).

Proof. According to Lemma 3.9, there exists ex-
actly one P1,κ1(s, x) such that

â(x)
P1,κ1(1, x)

≡ 1 mod x2.

Assume that recursively for 1 ≤ n < k−1 we found
uniquely defined Pn,κn(s, x) such that

â(x)
P1,κ1(1, x) · · ·Pn,κn(1, x)

≡ 1 mod xn+1,

then by Lemma 3.9 there exists exactly one series
Pn+1,κn+1(s, x) such that

â(x)
P1,κ1(1, x) · · ·Pn+1,κn+1(1, x)

≡ 1 mod xn+2

holds. Hence, we end up with

â(x)
P1,κ1(1, x) · · ·Pk−1,κk−1

(1, x)
≡ 1 mod xk,

where P1,κ1(s, x), . . . , Pk−1,κk−1
(s, x) are uniquely

determined. From Theorem 3.6 we deduce the exis-
tence of a uniquely determined formal power series
E(x) = 1 + e1x+ . . . such that

â(x)
P1,κ1(1, x) · · ·Pk−1,κk−1

(1, x)
=
E(p(x))
E(x)

.

Thus, â(x) can be written as

â(x) =
k−1∏
n=1

Pn,κn(1, x)
E(p(x))
E(x)

,

where E(x) and Pn,κn(s, x) are uniquely determined
for 1 ≤ n < k. From Lemma 3.8 it follows
that there is exactly one vector of parameters of
P (s, x) :=

∏k−1
n=1 Pn,κn(s, x), namely (κ1, . . . , κk−1),

hence
α̂(s, x) := P (s, x)

E(π(s, x))
E(x)

is also uniquely determined by â(x). It is a solution
of (Co1), and it satisfies the boundary condition,
which finishes the proof.

Summarizing, we found the following result: To any
given formal power series a(x) of order 0 and any
analytic iteration group π of the second type, there
exist solutions

α(s, x) = eµsP (s, x)
E(π(s, x))
E(x)

(15)

of (Co1) with E(x) = 1+e1x+. . . which also satisfy
the boundary condition α(1, x) = a(x).

Theorem 3.11. Assume that π is an analytic it-
eration group of the second type. Let a(x) and b(x)
be given formal power series, ord a(x) = 0, and let
α be a solution of (Co1) of the form (15) which
satisfies the boundary condition (B2).

1. If a0 6= 1, then there exists exactly one

β(s, x) = eµsP (s, x)E(π(s, x))

·
[
F (x)− e−µsF (π(s, x))

P (s, x)

]
which satisfies together with α the cocycle
equation (Co2) and the boundary condition
β(1, x) = b(x).

2. Assume that a0 = 1. If a(x) = 1, let m0 = k,
otherwise let m0 be the smallest element in
{n ∈ N | an 6= 0}, and let n0 := min {m0, k}.

a) First we assume that α is a solution of (Co1)
with µ 6= 0.

If n0 = k, then there exist families β of the
above form with P (s, x) = 1 which satisfy to-
gether with α the cocycle equation (Co2) and
the boundary condition β(1, x) = b(x) if and
only if bn = 0 for all 0 ≤ n < k. However, β
is not uniquely determined.

If n0 < k−1, or
[
n0 = k−1 and κk−1−nck 6=

0 for all n ∈ N
]
, then there exists a family β of

the above form, which satisfies together with α
the cocycle equation (Co2) and the boundary
condition β(1, x) = b(x), if and only if bn = 0
for all 0 ≤ n < n0. If β exists, then it is
uniquely determined.

If n0 = k − 1 and κk−1 = n1ck for n1 ∈ N,
then there exists a family β of the above form
which satisfies together with α the cocycle
equation (Co2) and the boundary condition
β(1, x) = b(x), if and only if bn = 0 for all
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0 ≤ n < n0 and bn1+k−1 satisfies a condition
which is implicitly given in the proof. How-
ever, β is not uniquely determined.

b) Finally we assume that α is a solution of
(Co1) with µ = 0.

If n0 = k, or n0 < k − 1 or
[
n0 = k − 1 and

κk−1 − nck 6= 0 for all n ∈ N
]
, then there

exists exactly one family β of the form

β(s, x) = P (s, x)E(π(s, x))

·
[
F (x)− F (π(s, x))

P (s, x)
+Q(s, x)

]
where

Q(s, x) =
n0−1∑
n=0

∫ s

0

`nπ(σ, x)n

P (σ, x)E(π(σ, x))
dσ

which satisfies together with α the cocycle
equation (Co2) and the boundary condition
β(1, x) = b(x).

If n0 = k − 1 and κk−1 = n1ck for n1 ∈ N,
then there exists a family β(s, x) of the form

E(π(s, x))P (s, x)
[
F (x)− F (π(s, x))

P (s, x)

+Q(s, x) + `′′n1+n0

∫ s

0

π(σ, x)n1+k−1

P (σ, x)
dσ

]

which satisfies together with α the cocycle
equation (Co2) and the boundary condition
β(1, x) = b(x). However, β is not uniquely
determined.

Proof. Writing β as indicated in the first part of this
theorem, the condition b(x) = β(1, x) is equivalent
to

b(x)
E(p(x))

= eµP (1, x)F (x)− F (p(x)). (16)

From the proof of Theorem 3.6, we know that

E(p(x)) =
∑
n≥0

enx
n +

∑
n≥k

(
(n− k + 1)en−k+1ck

+Rn−k+1

)
xn ≡

∑
n≥0

enx
n mod xk.

If we denote b(x)/E(p(x)) by
∑

n≥0 b̃nx
n, then∑

n≥0

b̃nx
n

E(p(x)) =
∑
n≥0

bnx
n.

Hence,∑
n≥0

bnx
n ≡

∑
n≥0

(
n∑

r=0

b̃ren−r

)
xn mod xk,

and the coefficients bn are uniquely determined by
the b̃n for 0 ≤ n < k.

Using the notation of Lemma 3.8 for the co-
efficients of P (s, x), condition (16) can be written
as ∑

n≥0

b̃nx
n =

eµ

∑
n≥0

pn(1)xn

∑
n≥0

fnx
n

−
∑
n≥0

fn[p(x)]n =

eµ
∑
n≥0

(
n∑

r=0

pr(1)fn−r

)
xn −

∑
n≥0

fnx
n

−
∑
n≥k

((n− k + 1)fn−k+1ck + Sn−k+1)xn,

where Sn−k+1(f0, . . . , fn−k) are universal polynomi-
als in f0, . . . , fn−k. Comparing coefficients yields

b̃n = eµ

(
fn +

n∑
r=1

pr(1)fn−r

)
− fn (17)

for 0 ≤ n < k, and

b̃n = eµ

(
fn +

n∑
r=1

pr(1)fn−r

)
− fn (18)

− (n− k + 1)fn−k+1ck − Sn−k+1

for n ≥ k.
In case 1 we assume that a0 = eµ 6= 1. Then

µ 6= 0, and fn is uniquely determined by

fn =
b̃n − eµ

∑n
r=1 pr(1)fn−r

eµ − 1
for 0 ≤ n < k, and

fn = (eµ − 1)−1

(
b̃n − eµ

n∑
r=1

pr(1)fn−r

+ (n− k + 1)fn−k+1ck + Sn−k+1

)
for n ≥ k.
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In case 2 we assume that a0 = eµ = 1 and
µ 6= 0. From the definition of n0 we deduce that
κn = 0 for 1 ≤ n < n0, and by Lemma 3.8 also
pn(s) = 0 for 1 ≤ n < n0. If moreover n0 < k,
then pn0(s) = κn0s and κn0 6= 0. For n = 0 we
deduce that b̃0 = 0 and recursively b̃n = 0 for all
1 ≤ n < n0. Hence, bn = 0 for 0 ≤ n < n0.

Case 2.1: If n0 = k, then a1 = · · · = ak−1 = 0
and according to Theorem 3.6 there exists a family
α of the form (15) satisfying (Co1) and (B2) with
P (s, x) = 1. Thus, (16) reduces to

b(x)
E(p(x))

= F (x)− F (p(x)).

Introducing coefficients, this is∑
n≥0

b̃nx
n =

∑
n≥0

fnx
n −

∑
n≥0

fnx
n

−
∑
n≥k

(
(n− k + 1)fn−k+1ck + Sn−k+1

)
xn.

Hence,∑
n≥0

b̃nx
n = −

∑
n≥k

(
(n−k+1)fn−k+1ck+Sn−k+1

)
xn.

By comparing coefficients we get b̃n = 0 for 0 ≤
n < k and

b̃n = −
(
(n− k + 1)fn−k+1ck + Sn−k+1

)
for n ≥ k. This formula allows to compute fn−k+1

recursively for n ≥ k, whence fn are uniquely de-
termined for n ≥ 1, whereas f0 is not determined
and can be chosen arbitrarily in C.

Case 2.2: If n0 < k, then (17) means

b̃n =
n∑

r=n0

pr(1)fn−r = κn0fn−n0 +
n∑

r=n0+1

pr(1)fn−r

for n0 ≤ n < k. Hence, fn−n0 is uniquely deter-
mined by

fn−n0 =
b̃n −

∑n
r=n0+1 pr(1)fn−r

κn0

for n0 ≤ n < k.
Finally, assume that n ≥ k. Case 2.2.1: If

n0 < k−1 (which is equivalent to n−n0 > n−k+1),
then from (18) we deduce that b̃n equals

n∑
r=n0

pr(1)fn−r − (n− k + 1)fn−k+1ck − Sn−k+1,

whence

κn0fn−n0 = b̃n −
n∑

r=n0+1

pr(1)fn−r

+ (n− k + 1)fn−k+1ck + Sn−k+1,

which allows to determine fn−n0 for n ≥ k.
Case 2.2.2: If n0 = k − 1, then

b̃n = κk−1fn−k+1 +
n∑

r=k

pr(1)fn−r

− (n− k + 1)fn−k+1ck − Sn−k+1

= (κk−1 − (n− k + 1)ck)fn−k+1

+
n∑

r=k

pr(1)fn−r − Sn−k+1.

Case 2.2.2.1: If κk−1 6= mck for all m ∈ N,
then fn−k+1 is uniquely determined by

fn−k+1 =
b̃n −

∑n
r=k pr(1)fn−r + Sn−k+1

κk−1 − (n− k + 1)ck
(19)

for all n ≥ k.
Finally in the case 2.2.2.2 we deal with the

computation of fn for n ≥ k, where a0 = 1, µ 6= 0,
n0 = k − 1, and κk−1 = n1ck for n1 ∈ N. Then for
n = n1+k−1, which is equivalent to n−k+1 = n1,
we get

b̃n1+k−1 =
n1+k−1∑

r=k

pr(1)fn1+k−1−r − Sn1 . (20)

This is a necessary condition for b̃n1+k−1 in order
to guarantee that β(s, x) can be adjusted to (B2).
Hence, bn1+k−1 must satisfy a corresponding con-
dition. If it is satisfied, then the coefficient fn1 of
F (x) can be chosen arbitrarily in C, and the coef-
ficients fn−k+1 for n ≥ k and n 6= n1 + k − 1 are
uniquely determined by (19).

Case 3: Now we assume that a0 = 1
and µ = 0. The general solution β(s, x) of
(Co2) is given at the beginning of 2.b) in the
present theorem. Let Q̃(s, x) denote the product
P (s, x)E(π(s, x))Q(s, x). It is easy to prove that

Q̃(s, x) ≡
n0−1∑
n=0

˜̀
nsx

n mod xn0

where ˜̀
n = `n + Zn(`0, . . . , `n−1) with polynomials

Zn in `j . From Theorem 2.8 it follows that Q̃(s, x)
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is a solution of (Co2). From b(x) = β(1, x), we
deduce that ˜̀

n = bn for 0 ≤ n < n0. If we put
δ(s, x) = β(s, x) − Q̃(s, x), then δ(s, x) is also a
solution of (Co2) with ord δ(s, x) ≥ n0. It can be
expressed as

P (s, x)E(π(s, x))
[
F (x)− F (π(s, x))

P (s, x)

]
.

The coefficients `n of Q(s, x) are uniquely deter-
mined by b(x). In order to satisfy (B2) we have to
find a series F (x), determining δ(s, x), such that

δ(1, x) = b(x)−
n0−1∑
n=0

bnx
n.

Similar as in case 2 it follows that for n0 < k − 1
or
[
n0 = k − 1 and κk−1 6= nck for all n ∈ N

]
there exists exactly one family δ which satisfies to-
gether with α the cocycle equation (Co2) and the
boundary condition from above. Thus, β(s, x) =
δ(s, x) + Q̃(s, x) is uniquely determined.

If n0 = k, then similarly to case 2 only the
coefficient f0 of the series F (x) is not uniquely de-
termined. But since µ = 0, this coefficient does
not influence δ. Hence also in this situation δ and
consequently β are uniquely determined.

Finally, if n0 = k − 1 and κk−1 = n1ck for
n1 ∈ N, then according to the last part of Theorem
2.8 we are allowed to add

E(π(s, x))P (s, x)`′′n1+n0

∫ s

0

π(σ, x)n1+n0

P (σ, x)
dσ

to the general solution β(s, x), where `′′n1+n0
is an

arbitrary complex number. By doing this it is possi-
ble to skip the additional condition (20) for b̃n1+k−1

which occurred in case 2.2.2.2. In order to compute
the integral from above we derive

π(σ, x)n1+n0 =

xn1+k−1 + (n1 + k − 1)ckσxn1+2(k−1) + . . .

and
π(σ, x)n1+n0

P (σ, x)
=

xn1+k−1 + (n1 + k − 1)ckσxn1+2(k−1) + . . .

1 + κk−1σxk−1 + . . .
=

xn1+k−1 +((n1 +k− 1)ck−κk−1)σxn1+2(k−1) + . . . ,

hence ∫ s

0

π(σ, x)n1+n0

P (σ, x)
dσ =

sxn1+k−1 +
n0ck

2
s2xn1+2(k−1) + . . . .

Consequently, for s = 1 we get

P (1, x)`′′n1+n0

∫ 1

0

π(σ, x)n1+n0

P (σ, x)
dσ ≡

`′′n1+k−1x
n1+k−1 mod xn1+k.

We indicate this formal power series by∑
n≥n1+k−1

qnx
n,

thus qn1+k−1 = `′′n1+k−1.
For k ≤ n < n1 + k − 1 the coefficient fn−k+1

is uniquely determined by (19). For n = n1 + k− 1
we determine `′′n1+k−1 by

`′′n1+k−1 = b̃n1+k−1 −
n1+k−1∑

r=k

pr(1)fn1+k−1−r + Sn1

and fn1 can be chosen arbitrarily in C. Finally, for
n > n1 + k − 1 the coefficients fn−k+1 is uniquely
given by

fn−k+1 =
b̃n −

∑n
r=k pr(1)fn−r + Sn−k+1 − qn
κk−1 − (n− k + 1)ck

.

In the case a0 = 1, the condition bn = 0 for
all 0 ≤ n < n0 is also a necessary condition for
the existence of a solution ϕ(x) of (L). This fact is
shown in the next

Lemma 3.12. Let p(x) = x+ ckx
k + . . . for k ≥ 2

and ck 6= 0, and assume that a(x) = 1 (then set
m0 := k) or a(x) = 1 + am0x

m0 + . . . for 1 ≤ m0

and am0 6= 0. If ϕ(x) ∈ C [[x]] is a solution of (L),
then bn = 0 for 0 ≤ n < n0 := min {m0, k}.

Proof. Elementary computations yield

ϕ(p(x)) =
∑
n≥0

ϕn[p(x)]n =

∑
n≥0

ϕn(xn + nckx
n−1+k + . . . ) ≡
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n≥0

ϕnx
n mod xk,

and

a(x)ϕ(x) + b(x) =
∑
n≥0

(
n∑

r=0

arϕn−r + bn

)
xn =

∑
n≥0

(
ϕn +

n∑
r=m0

arϕn−r + bn

)
xn.

Hence, comparing coefficients of xn on the left and
on the right side of (L) yields

ϕn = ϕn + bn

for 0 ≤ n < n0, thus bn = 0.

4. Solution of the problem of covariant em-
beddings in certain special cases

In this section we give in Theorem 4.1 a necessary
condition that a given linear functional equation
(L) (with a non-empty set of solutions) has an em-
bedding with respect to a given analytic iteration
group of p(x). In Corollary 4.2 we present, as a con-
sequence, a rather large class of such embeddings.
However, there remain some special cases of solu-
tions (α, β) of the system ((Co1),(Co2)) and the
boundary conditions corresponding to (L) where
the existence of an embedding is still open.

Theorem 4.1. Assume that the linear functional
equation (L) has a solution ϕ(x) ∈ C [[x]], and let
(π(s, x))s∈C be an analytic iteration group of p(x).
Furthermore, assume that α satisfies (Co1) and the
two boundary conditions (B1) and (B2). If there
exists exactly one β which also satisfies (B1) and
(B2), such that (α, β) is a solution of (Co2), then
there exists an embedding of (L) with respect to the
iteration group (π(s, x))s∈C.

Proof. Let ϕ be a solution of (L). Then Φϕ(s, x)
defined by

Φϕ(s, x) := ϕ(π(s, x))− α(s, x)ϕ(x)

satisfies both Φϕ(0, x) = ϕ(x) − 1ϕ(x) = 0 and
Φϕ(1, x) = ϕ(p(x)) − a(x)ϕ(x) = b(x). Further-
more, the pair (α,Φϕ) satisfies (Co2), since

Φϕ(t+ s, x) = ϕ(π(t+ s, x))− α(t+ s, x)ϕ(x) =

ϕ(π(t, π(s, x)))− α(s, x)α(t, π(s, x))ϕ(x) =

Φϕ(t, π(s, x)) + α(t, π(s, x))ϕ(π(s, x))

−α(s, x)α(t, π(s, x))ϕ(x) =

Φϕ(t, π(s, x)) + α(t, π(s, x))

·[Φϕ(s, x) + α(s, x)ϕ(x)− α(s, x)ϕ(x)] =

Φϕ(t, π(s, x)) + α(t, π(s, x))Φϕ(s, x).

In other words, Φϕ satisfies the same conditions as
β, i.e., (B1), (B2) and together with α the cocycle
equation (Co2). Hence, since there exists exactly
one β with these properties, Φϕ(s, x) = β(s, x) for
all s ∈ C and all solutions ϕ(x) of (L).

Combining this result with Theorem 3.5 and
Theorem 3.11, we get

Corollary 4.2. If π(s, x) = eλsx is an analytic it-
eration group of the first type, and eλ is not a com-
plex root of 1, then there exists an embedding of (L)
with respect to the iteration group π.

Assume that π(s, x) = x+cksxk+. . . with k ≥ 2
and ck 6= 0 is an analytic iteration group of the sec-
ond type. If a0 6= 1, then there exists an embedding
of (L) with respect to the iteration group π. Assume
that a0 = 1. If n0 < k−1, or n0 = k, or

[
n0 = k−1

and ak−1 6= nck for all n ∈ N
]
, then there exists an

embedding of (L) with respect to the iteration group
π.

If p(x) = ρx+c2x
2 + . . . , where ρ 6= 1 is a com-

plex root of 1, and p(x) does not have an embedding
in an analytic iteration group, then there exists no
covariant embedding of the linear functional equa-
tion. If p(x) has an embedding, then it is still open
whether there exists a covariant embedding of (L).
In addition to this the embedding problem is also
still open for analytic iteration groups π of the sec-
ond type, when π(s, x) = x+cksxk + . . . with k ≥ 2
and ck 6= 0 and a(x) = 1 + ak−1x

k−1 + . . . with
ak−1 = n1ck for n1 ∈ N.
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d’itération,” Sitzungsberichte ÖAW, Math.-nat.
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