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Remarks on Rhythmical Canons

Harald Fripertinger

Abstract

We collect some remarks on rhythmical canons, which are described as
pairs of inner and outer rhythms. First we explain a method for creating
new canons by inserting a given canon into a given canon. Then we analyze
a backtracking algorithm which uses as an input the inner rhythm of a
canon and allows to find all outer rhythms so that the resulting canon is
a rhythmic tiling canon. Based on this algorithm we provide a complete
list of all RCMC-canons of length 72 and 108.

1 Preliminaries

We describe rhythmical canons as discrete structures, therefore, we use
mathematical notions. Especially group actions will play a central role
in our approach. A detailed introduction to combinatorics under finite
group actions can be found in [4, 5].

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

#Gx X =X, x(g,7) = g*u,
such that

(gng)*x:gl*(QQ*x)a 91792€G> .’EEX,

and
lxx=ux, r e X.
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We usually write gz instead of g x x. A group action will be indicated as
¢X. If G and X are finite sets, then we call the group action finite.

A group action ¢ X determines a group homomorphism ¢ from G to
the symmetric group Sx := {r | 7 : X — X, 7 is bijective} by

¢:G — Sy, g ¢(g) =[x — gz],

which is called a permutation representation of G on X. Usually we
abbreviate ¢(g) by writing g, which is the permutation of X that maps z
to gz. For instance 1 is always the identity on X. Accordingly, the image
#(G) is indicated by G. It is a permutation group on X, i.e. a subgroup
of Sx.

If X is finite then G is finite since it is a subgroup of the symmetric
group Sx which is of cardinality | X|!. Hence, whenever X is finite we can
speak of a finite group action.

A group action ¢X defines the following equivalence relation on X.
x1 ~ o if and only if there is some g € G such that x93 = gry. The
equivalence classes G(z) with respect to ~ are the orbits of G on X.
Hence, the orbit of x under the action of G is

G(z) ={gz | g € G}.
The set of orbits of G on X is indicated by
G\X :={G(z) |z € X}.

It can be shown that the equivalence classes of any equivalence relation
can be represented as orbits under a suitable group action (cf. [5]).

Let ¢X be a group action. For each x € X the stabilizer G, of x is
the set of all group elements which do not change z, in other words

G, ={9€G|gr=z}.

This is a subgroup of G.

When investigating a rhythm we consider a sequence of beats. We are
only interested in the onsets, not in the duration of the different beats.
Moreover, we want to forget all information about the pitch.

We also assume that we have found a subdivision of the rhythm, i.e.
a regular pulsation, into equidistant beats such that all rhythmical events
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coincide with some of these beats. If the rhythm is covered by a pulsation
of n beats, then it can be described as a {0, 1}-vector of length n, whence
as a function f:{0,...,n —1} — {0,1}.

For example, the function f = (f(0),..., f(7)) = (1,0,0,1,1,0,1,0)
describes a rhythm of length 8 which can be represented as

n n
Le——5F—— o HeSrrr—]
Pl P e el

The cyclic group C,, generated by m, := (0,1,...,n — 1) acts on the
set of all mappings from n :={0,1,...,n — 1} to {0, 1} according to

Cn X {07 1}Q - {07 1}ﬂ7 (va) = f OU—1~
If we write f as a vector f = (f(0),..., f(n— 1)), then

foﬂf]:(f(]),7f(n—1),f(0),f(]—l))

Hence, the orbit C,,(f) consists of all cyclic shifts of f. Using the natural
order 0 < 1, the set {0, 1}* is totally ordered by the lexicographical order.
For f,g € {0,1}* we say

f<g=3FJien: f(j)=g(j) for j <iand f(i) < g(i).

Usually we choose the smallest element of an orbit as its canonical rep-
resentative. For example the orbit of f = (10011010) under Cy contains
the vectors (10011010), (00110101), (01101010), (11010100), (10101001),
(01010011), (10100110), (01001101). Therefore, its standard representa-
tive is (00110101).

The stabilizer of f € {0,1}* is a subgroup of C,,, whence again a cyclic
group. We call f acyclic if its stabilizer consists of the identity only. If f
is acyclic, then the canonical representative of C,(f) is called a Lyndon
word.

The function of the last example is acyclic, and (00110101) is a Lyndon
word. The vector f = (01100110) has a nontrivial stabilizer, since g # id
and f = foms.

We also identify a {0, 1}-vector f with the set f~1({1}) of pre-images
of 1. Then f is the characteristic function of f~'({1}). In this case it
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is sometimes helpful to assume that f~}({1}) C Z, := Z/nZ, the set of
residue classes modulo n.

The weight wt(f) of a {0, 1}-vector f is the number of components of
f which are equal to 1, thus

= |71 -

The concept of a canon is described in [6] and was presented to the
author by G. Mazzola as described in [2, 3]. Here we rephrase this defi-
nition in the notion of {0, 1}-vectors. A canon of length n consisting of
t > 1 voices V; is a set {V1,...,Vi} of {0, 1}-vectors V; # 0 of length n,
such that

1. Ve C,(Vy) for 1 < i <t,
2. Vi is acyclic,
3. the set of differences in K := U§:1 V; generates Z,, i.e.

(K—K):=(k—1|kl€K)=Z,.

Two canons {V4,...,V;} and {Wy, ..., W,} are called isomorphic if s = ¢
and if there exists some ¢ € (), and a permutation 7 in the symmetric
group S; such that o(V;) = W, for 1 < i < t. The reader should be
aware of the fact that depending on the context we consider the voices of
a canon both as {0, 1}-vectors and as subsets of Z,,.

Following the ideas presented in [2] and the notions introduced in [1],
the canon {V4,...,V;} can also be described as a pair (V4, f) € {0,1}* x
{0,1}*, where V; is the inner and f the outer rhythm of the canon.
The inner rthythm describes the rhythm of an arbitrary voice. The outer
rhythm determines how the different voices are distributed over the n
beats of a canon.

For example the canon with the following three voices V; = (10011010),
V5 = (01010011), and V5 = (11010100) yields a score of the form

10011010
01010011
11010100.

Here we have marked the starting positions of the different voices with a
boldface 1. Therefore, the outer rhythm of this canon is f = (10010100).
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Given a canon (V, f) of length n, there exists an isomorphic canon
(L, f') where L is a Lyndon word, the canonical representative of C,(V}),
and f is the canonical representative of C,(f). The different voices of
the canon given by (L, f') are j + L for j € f'.

However not each pair (L, f) where L is a Lyndon word and f is a
{0, 1}-vector determines a canon of length n. In [2] we have proved the
following

Lemma 1. Let L # 0 be a Lyndon word, and let f be a {0, 1}-vector
both of length n. The pair (L, f) does not describe a canon if and only if
there exists an integer d > 1 such that d | n, d | k—1 for all k,1 € L, and
d| k=1 foralk,lef.

Based on this result the number of nonisomorphic canons of length n was
determined in [2].

A canon of length n is called a rhythmic tiling canon if Z, = Ule V.
In other words, the voices are pairwise disjoint and cover entirely Z,.
The canon (L, f) is a thythmic tiling canon if and only if L+ f = Z,, and
|L||f| = n, thus Z, is the direct sum L & f of L and f. Tiling canons
were enumerated in [3].

A rhythmic tiling canon described by (L, f) is a reqular complementary
canon of maximal category (RCMC-canon) if both L and f are acyclic.
Dan T. Vuza was analyzing these canons in [10, 11, 12, 13]. Maybe the
term twofold acyclic rhythmic tiling canon would be more suggestive but
we stick to the standard terminology.

In general, let G be an abelian group. A subset A of G is called g-
periodic for g € G if A= g+ A, and it is called periodic if it is g-periodic
for some g € G which is different from the neutral element. Otherwise
A is called aperiodic. (Subsets of Z, are aperiodic if and only if they are
acyclic.) The group G is called a Hajds group, or has the 2-Hajds property,
if in each factorization of G as A @ B at least one factor is periodic.
In [8, 9] all finite abelian groups which are Hajds groups are classified.
Independently, Vuza described all Hajés groups Z, in [10, Theorem 2.2].

Vuza showed that RCMC-canons occur only for certain values of n,
actually only for those n where Z,, is a non-Hajds-group. The smallest n
for which Z,, is not a Hajos-group is n = 72. Z, is not a Hajés group if
and only if n can be expressed in the form pyponinong with pi, ps primes,
n; > 2 for 1 <4 <3, and ged(nipr, neps) = 1 (cf. [10, Proposition 2.2]).
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If Z, is not a Hajés group, Vuza presents an algorithm for constructing
RCMC canons. He describes how to find two acyclic vectors L and f of
length n, such that |L| = ning, | f| = pipans, and L+ f = Z, (cf. [10, proof
of Proposition 2.2]). RCMC-canons which can be constructed by Vuza’s
algorithm are called Vuza-constructible. In [3] we were enumerating Vuza-
constructible canons for certain lengths n, and it was also shown that there
exist RCMC-canons which are not Vuza-constructible.

2 New Canons From Old Canons

Now we define a composition of two {0, 1}-vectors. For f € {0,1}* and
g € {0,1}" let f[g] be the vector in {0, 1}*** where each 1 in f is replaced
by ¢ and each 0 in f is replaced by 0™ = 0...0, the sequence of m zeros.
Since each ¢ € nm can uniquely be written as ¢ = gm + r with ¢ € n and
r € m we obtain

flol(@) = flgl(gm+ 1) = f(q) - g(r).
Lemma 2. For f, f' € {0,1}* and g € {0, 1}"* we have

1. wt(flg]) = wt(f) wt(g)-

If g # 0™, then the mapping {0,1}* > f — flg] € {0,1}** is
mjective.

flgl o mhim = (f o m))lg]-

f < f" implies fg] < f'[g].

If g# 0™ and f < f', then flg] < f'[g].

If f and g are the canonical representatives of C,(f) and Cy(g),
then f[g] is the canonical representative of Cpm(f[g])-

o

S T

7. If f is a Lyndon word of length m > 1 and g # 0™ is the canonical
representative of Cp,(g), then flg] is a Lyndon word.

Proof. The proof of the first assertion is obvious.
2.) Assume that filg] = folg] for /1, fo € {0, 1}* and g € {0, 1}, g # 0"
Then for all (q,7) € n x m we have f1(q)g(r) = f2(q)g(r). Since there
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exists some 1y € m such that g(rg) # 0 we obtain fi(¢) = fa(q) for all
q € n, whence f; = fo.

3.) Assume that ¢ € nm is expressed as ¢ = ¢gm+r with ¢ € n and r € m.
Then

(#1910 72in) () = fl)(i + jm mod nm) = flg]((q+ j)m +r mod nm)
fla+jmod n)g(r) = (f o m)(@)g(r)
= ((romlal) (am +r) = ((F o wlg]) (0.

4.) If g = 0™, then f[g] = f'[g] = 0™. Assume that g # 0™, then there
exists some ry € m so that g(rg) = 1 and g(j) = 0 for 0 < j < r. Since
f < f' there exists some gy € n so that 0 = f(qo) < f'(q) = 1 and f(j) =
1'(4) for 0 < j < qo. Consequently f[g](¢) = f'[g](i) for 0 < i < gom + 19
and 0 = f(q0)g(ro) = flgl(qom + ro) < f'[g](gom + 70) = f'(q0)g(ro) =1
and, therefore, f[g] < f’[g]. This proves also the fifth assertion.
6.) We prove that f[g] < flg] o 7@ for all (q,7) € n X m. The assertion
is trivial for ¢ = 0™, thus we restrict our attention to g # 0. Then
gm—1)=1

Assume that f = 17, then fon? = f and f[g] = g", the concatenation
of n copies of g. Since ¢ is the canonical representative of its orbit,
gom, > g and, consequently, flg] o 74+ = flgo ] = (gom,)" >
9" = flg]. We still have to consider the case that f # 1. Then f(0) =0
and f[g](¢) = 0 for 0 < i < m. By assumption f < f o7, whence
flgl < (f omd)lgl = flgl o i

It f(q) = (fom})(0) =1, then

(f[g]ow%%”)(mflfr) =flgllm—1—r+qgm+r)
= flg)gm—1) =1
O:f[g](m—l—r),

whence f[g] o I > flg].
Finally, if f(q) = (for?)(0) = 0, then (f[g]om?")(i) = 0 for 0 < i < m.
Thus,

flgl < flalomim < flgl o min™ < .. < flgl o mipt™ ™!
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since by an application of ,,, the leftmost 1 of f[g] o 7% 0 < j < m,
is moving to the left. (Since f[g] o 72" = 0 there exists some iy so that
(flg)omm)(io) = 1 and (f[g] om2m)(j) = 0 for 0 < j < iy. By assumption
ip > m. Then the smallest ¢ € nm so that (f[g] o 7Z""")(i) = 1 is equal
toig —r >0 for r € m.)

7.) We just have to prove that f[g] is acyclic. Since f is a Lyndon word
we have f(0) = 0, f(n — 1) = 1, and according to the third and fifth
assertion, flg] o 74" = (f o 7wd)[g] < flg]. We still have to prove that
flgl # flgl o 7Z*" for ¢ € n and r € m, r # 0. From the definition
of f[g] and since g # 0™ is a canonical representative it follows that, if
flgl(im + j) = 1 for some j € m, then f[g](im+m —1) = 1.

Since f is a Lyndon word of length n > 1, there exists some ¢y € n so
that f(go) =1 and f(go+1 mod n) = 0. Therefore, f[g](gom+m—1) =1
and moreover f[g]((go+ 1)m + j mod nm) =0 for 0 < j < m. Assuming
on the contrary that f[g] = f[g] o 7% for some r # 0, we have for

nm
Jjo=gom+m —1— (gm+r) mod nm

(flglomim ) (o) = flgl(qom +m —1) = 1.

Therefore, also f[g](jo) = 1. Since jy can be represented as ¢'m + r’ with
r=m —1—r <m—1 we obtain from the construction of f[g] that also
flgl(¢'m +m — 1) = 1. Using the original definition of jy, this can be
written as

1= flgl(@m+m—1)= flglGGo+m—1— )
= flgl(gom +m — 1 — (gm + r) + r mod nm).

Since f[g] = flg] o 7" this is equal to
(flg] o T2 (gom +m — 1 — (gm + r) + r mod nm)
and consequently

flo)((go + 1)m + (r — 1) mod nm) = 1.

Since r — 1 € m, this is a contradiction to f[g]((go+1)m+j mod nm) =0
for0 < j<m. O

As an immediate consequence we obtain the following
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Theorem 3. Fori=1,2 let (L;, fi) be a canon of length n;.
1. Then (L1[Ls], fi[f2]) is a canon of length nins.

2. If (Ly, f1) is a rhythmic tiling canon and (La, f5) is a rhythmic tiling
canon, then (L1[La], fi[f2]) is a rhythmic tiling canon.

3. If (L, f1) is an RCMC-canon and (La, f2) is a rhythmic tiling canon,
then (Li[Ls], f1[f2]) is an RCMC-canon.

3 A Backtracking Algorithm

Now we describe an algorithm which allows to find for any given inner
rhythm L, which is a Lyndon word, all outer rhythms f such that (L, f)
is a rhythmic tiling canon. We want to apply this algorithm for finding
all RCMC-canons of given length.

In [10, Theorem 2.3] it is shown that if Z,, = A® B, then Z,, = (kA)®B
for each k # 0 relatively prime to n. This means that the pair (L, f)
indicates an RCMC canon if and only if (kL + r, f) indicates an RCMC-
canon for k,r € Z,, where k and n are relatively prime integers. Thus,
instead of L it is possible to use the {0, 1}-vector L given by L(i) :=
L(—i — 1 mod n), whence L(i) = L(n —1—1i), i € Z,. Since L is a
Lyndon word, L(0) = 1.

The span of a rhythm f of length n with f(0) = 1 is defined to be
j+1for j = max{ie€n| f(i) #0}. Here is a short example. The
rhythm 11000000 has span 2 and its cyclic shift 10000001 has span 8. For
the backtracking algorithm it is important to consider rhythms of short
span. Due to the construction above it is easy to show that L has the
shortest span of all rhythms in the orbit C,L(E).

There is still another useful way for representing a rhythm. Assume
that f is a {0, 1}-vector of length n with exactly k& > 2 entries equal to 1.
Thus, there are integers 0 < ip < iy < ... <iy—1 < n—1sothat f(i;) =1
for 0 <j<kand f(i) =0 fori € n\ {ig,...,ik—1}. With f we associate
the function f: k — Z-q given by

FroN . ij — 7;]‘_1 for 7 >0,
f(]) T {n - (ik_1 - io) for j =0.

We call f the interval representation of f.
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Lemma 4. Let f be a {0,1}-vector of length n with k > 2 entries equal

to 1.

Then

Zkfl

If ik — Z>0 satisfies ZZ Olh(i) = n, then there exists a {0,1}-
vector v so that v = h.

For fach v € Cn(f) the interval representation ¢ belongs to the orbit
Ci(f), where Cy acts on ZE, by

Cp x 2k, — 75 (o,h) +— hoo .

>0
This is a natural generalization of the group action introduced for
{0, 1}-vectors.
For each h € Cy(f) there exists some v € Cy(f) so that h = .
f is acyclic if and only sz is acyclic.
If f is the canonical representative of the orbit C,(f), then f >h

uA)ith respect to the lexicographical order for all h € Cy(f). Therefore,
f(0) > f(i) fori€ k.

Assume that h:k — Z-( satisfies Zf:_ol h(i) = n. The last assertion
of Lemma 4 motivates to choose the greatest vector with respect to the
lexicographical order as the canonical representative of the orbit Cj(h).

In the following we use the convention that the empty sum always
yields 0. Let (L, f) be an RCMC-canon where f contains exactly k entries
equal to 1, and let L and f be as above. For i € k the union of the first
1+ 1 voices, considered as subsets of Z,,, will be denoted by

s=U((S0) 1)

We collect some properties of the canon (L, f):

1.

Since each RCMC-canon is a rhythmic tiling canon we have

((if(])) +z> mSﬁ.f,i:@ (Ty)

forallzek—landSLfk | = Zp.
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2. Let s denote the span of L and assume that i < k—2. If Z;’-:O ) <
s, then either 27“ f(j) < s and (Ti4) is satisfied or

i+1
Zf( mln{t>s|t€SLfH_l}

J=0

and (Tiy) is satisfied.
If Zézo f(j) > s then

’
{s,erl,---, f(])} CSE,fJH'
=0

In this situation it is still possible that there exist some integers in
s which are not contained in S; ;;,,. Moreover, the value f(i + 1)
satisfies

-

~ 7(j) = min {t=s1t¢ S 0}

<.
Il
(==}

and (Tijq).
3. From f(0) > f(i), i € k, we derive that k- f(0) > n, whence
f(0) = n/k.

Now we are in a position to describe the main aspects of the back-
tracking algorithm. We assume that the Lyndon word L of length n > 1
which is a {0, 1}-vector with ¢ > 1 entries equal to 1 is considered to be
the inner rhythm of an RCMC-canon. Then necessarily ¢ is a divisor of
n. Let k :=n/(. In the algorithm we use the rhythm L(i) = L(n—1—1),
i € Z,, instead of L. Let s be the span of L.

The backtracking tries to find the interval representation of all rhythms
f so that (L, f) is an RCMC-canon. Since we are only interested in
non-isomorphic canons we restrict ourselves to interval representations
belonging to the set

H —{h:@—>Z>O

k—1
> h(i) =n, h(0) > h(i), i € @}.
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We assume that we have found a vector (h(0),...,h(i —1)),0 <i<
k —1, so that the sets S7 , ;, 0 < j < contain (j + 1) ¢ elements. Then
we determme the set of all p0351ble values h(7) in the following way:
Case 1. If ZZ v h(j) < s—1, then let

U = {t ‘ ziih(j) <t<s—1, <t+i) ﬁSi,h,z‘@}v
=0
to ;= min {t >s|t¢ Si,h,z‘}
and

Vo { {to} if (to + i) NSz =0,
1] else.

If ¢ = 0, then the set of all possible values for h(0) is given by
Hy = {te Uy U Vi ’th/k}.

Otherwise, the set of all possible values for h(i) is given by
i1
H _{ Zh(y‘)ghw)}-
§=0

Case 2. If Z h(j) > s, then the set of all possible values for h(z) is

Hi:{ i t—ih(j)<h(0)}~
=0

Thus, in case 2 the set H; is either empty or contains exactly one element.

In order to extend the vector (h(0),...,h(i — 1)) by appending the
next entry, we choose h(i) as the smallest element of H;.

If we have determined (h(0), ..., h(k—2)) then the value of h(k—1) is
also determined by h(k —1) = n— Zf:_g h(i). For that reason it is always
enough to determine the sets Hy,..., Hy_9. If h(k — 1) > h(0) then h
does not belong to H.
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There are two situations in which it is impossible to extend the vector
(h(0),...,h(i—1)). Either the vector h has already full length, i.e. i—1 =
k — 2 (since then h(k — 1) is uniquely determined), or H; = (). In both
situations the backtracking algorithm tries to change the last entry of the
vector (h(0),...,h(i—1)) by replacing h(i —1) by the smallest element in
H;_; which is greater than the present h(i —1). If there is no successor of
h(i—1) in H;_1, then the algorithm tries to find a successor of h(i—2) and
so on. Assume that a successor of h(i —r) was found, then the algorithm
tries to extend the new vector (h(0),...,h(i —r)) by appending suitable
values h(i —r +1),h(i —r + 2),.... The reader should realize that since
we have changed the value of h(i — r) also the sets H;_,,; for j > 1 are
changed.

The backtracking algorithm terminates when it cannot find a successor
for h(0).

As a matter of fact, this algorithm yields rhythmic tiling canons, not
necessarily RCMC-canons. In certain situations it produces just one rep-
resentative of an isomorphism class, in some other situations it can hit
an isomorphism class several times. So we still have to check the output
of this algorithm, delete all rhythmic tiling canons which are not RCMC
and delete vectors yielding canons isomorphic to canons already listed.
This can be done the following way: If h(0) > h(i) for all 1 <i < k, then
h is acyclic and due to the construction of our algorithm it is the only
representative of its orbit listed by this algorithm. If there exists some i,
1 <@ < k, so that h(0) = h(i), then we have to check whether h has cyclic
symmetries. If so, it is deleted from the list. When 2(0) occurs A times in
h and h is acyclic, then there are at most A vectors in the output of the
algorithm belonging to the orbit Cj(h). In each of these vectors the value
h(0) occurs exactly A times. In order to obtain nonisomorphic canons,
separately for each A > 1 we have to determine the canonical orbit rep-
resentatives of those vectors in the algorithm’s output which contain the
value h(0) in exactly A positions.

For example, there exist only three different inner rhythms of Vuza-
constructible RCMC-canons of length 108 with exactly 6 beats. The
interval representation of these canons is given by (57,12,12,3,12,12),
(33,24,3,21,3,24) and (27,21,12,15,12,21). If L denotes any of these
rhythms, the backtracking algorithm produces the following list of all
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(L, f) is an

possible outer rhythms f in interval representation so that

RCMC-canon of length 108.

18 764189176517 171541

1876 1459476514452614

1874511711 11617927461
18742529776511725425

18716227118647927164
187154181076589171565

185652792567 16252452
185625495567 13541625

1855422513 10625945562
18551719856710814517
18526145137655945265

18524527115677925247

184724141411614954761
18467189146817144271

184644594468 14441544

1846 1729746811 722617

18445144148644954464

18442718104688914428

18416254145674954167

184154451346859441538

1828152216 10622972862

18268279226 1016225182
182655495261013522455
18262819826 1010811628
1825425216 7652972565

1825182711261079225110
182261721646829722638

1822455414261049522410
1819161117 116119811061
18172441178641981764

1816 101891161117 116191

1816745941611 14414274
1816472971611 11711547

1816191810161189116110
1814517117567 1981467

1814274513161159414211

181162811726 10198116 10
8115472161611 29711511

17 134117911351 16185411

1713141494135113458141

1711251197 135110729251
17944117914518818542
17941414917518545815

17926119910619919162

178541171013517918551
1781541997649917245

17674279167616162542

1767 1549467613451715

17652619767610724526
17625427106767916256

175814141313514945851
1754271994679914518

17517 154136764945176

1729251116 135119721151
17261919916109911629
17245818815149711449
17245261166761972476

1715112791151316115292
171585494151313414185
1715581971513107114538

1715292710151379115 211

304117181136161814411

302225272146142725222

301414454136134544141

301144181166131817114

2906561172721161727225811

290241454511 6145452241

2901422545 146115454142

291411791315116941411

291152272176112727115

2911414916151 13971141

286118181106191811611

284225454106164541422

282511727136107272251

282411891124217922411

282241454166104545224

282222591424214952222

281611818116118181161

2816522727106 137271152

281511991015119911511

281161181196101818116

281151191915110991151

281142291724211981142
26622727286202711522

26514454586175441414

26441171814688181442

264222791042416914222
26414144517685454415

264114491342413944114

262611819106109181162
26244181886148171144

26242299824220811422

26225117220682727226
26224118202428992242

262224191642410972224
26641818176221711441

26614545476194522414

265641171913679181451
2662225271667 7272524
265614189851517814141

26651145911 51514925114
26451172911689272261
256425272776167252225

26424199742419722241

26414225419674545416
26414117221517994151

2641152914515 11954115
2616227298611 9271154

256154181976139171145

26151499715122711414

26144117122671818146
26142227194247991424
26141418175158981415
23722252914659272542
23711441817658181715

236527272562325222652

23625454556205414225

23614279761616724142

236115491061613916115
23542254910679454162

23522414520655454526
23522225232425995242
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This list contains 252 outer rhythms f. In [3] we have shown that for
each of the 3 inner rhythms consisting of 6 beats, which were mentioned
above, there are 180 different outer rhythms of Vuza-constructible canons.
For instance, there are 48 interval representations f starting with 18.
They do not occur in the list of all Vuza-constructible canons. Thus,
together with L they are RCMC canons which are not Vuza-constructible.

4 Complete Lists of RCMC-Canons

If (L, f) is a rhythmic tiling canon of length n, then the weights of L and
f are divisors of n. For the complete classification of RCMC canons the
following theorem is crucial.

Theorem 5. (Sands [7, Theorem 2]) If G is a finite cyclic group,
G =A® B and A has p* elements, where p is a prime, then either A or
B is periodic.

We obtain the following formulation for rhythmic tiling canons.

Corollary 6. Assume that a rhythmic tiling canon is given by the pair
(L, ). If wt(L) or wt(f) is a prime power, then f has cyclic symmetries.
Thus, (L, f) is not an RCMC-canon.

This theorem can be used in the following way to find complete lists of
RCMC-canons of length n = 72 and n = 108. First we find all suitable
decompositions of n as a product of two positive integers, n = rs. If both
r and s are not powers of a prime we assume that r < s and continue with
the following construction. We determine all Lyndon words L of length n
and weight r over {0, 1}. They serve as possible inner rhythms. Using the
backtracking algorithm, we try to find all outer rhythms f so that (L, f)
is an RCMC canon. In order to decrease the number of possible inner
rhythms which must be input to the algorithm, we collect these Lyndon
words into orbits under the action of the affine group. (From [10, Theorem
2.3] it is easy to deduce that the image of an RCMC canon under an affine
transformations is again an RCMC canon.) From each orbit under the
affine group we choose one representative L and determine all acyclic
outer rhythms f, such that L + f = Z,,.
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For n = 72 we have to consider the composition 72 = 6 - 12. There
are 2169882 Lyndon words of length 72 and weight 6 over {0, 1}. There
remain just 3 Lyndon words which can be extended to an RCMC-canon.
For each Lyndon word there exist (the same 6) outer rhythms which can
be used to determine an RCMC-canon. All these canons were already
found by Vuza’s algorithm.

For n = 108 we have to consider the composition 108 = 6 - 18. There
are 17717859 Lyndon words of length 108 and weight 6 over {0, 1}. They
are collected into 514754 orbits under the action of the affine group.
There remains only one orbit representative which can be extended to
an RCMC-canon. (This orbit contains 3 different Lyndon words.) For
cach of these Lyndon words there exist (the same 252) outer rhythms
which can be used to determine an RCMC-canon. They are listed at the
end of the previous section. As already explained there, some of these
RCMC-canons of length 108 are not Vuza-constructible.

In both situations these are the only compositions of n which possibly
lead to RCMC-canons.
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