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Remarks on Rhythmical Canons

Harald Fripertinger

Abstract

We collect some remarks on rhythmical canons, which are described as
pairs of inner and outer rhythms. First we explain a method for creating
new canons by inserting a given canon into a given canon. Then we analyze
a backtracking algorithm which uses as an input the inner rhythm of a
canon and allows to find all outer rhythms so that the resulting canon is
a rhythmic tiling canon. Based on this algorithm we provide a complete
list of all RCMC-canons of length 72 and 108.

1 Preliminaries

We describe rhythmical canons as discrete structures, therefore, we use
mathematical notions. Especially group actions will play a central role
in our approach. A detailed introduction to combinatorics under finite
group actions can be found in [4, 5].

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

∗: G × X → X, ∗(g, x) 7→ g ∗ x,

such that

(g1g2) ∗ x = g1 ∗ (g2 ∗ x), g1, g2 ∈ G, x ∈ X,

and
1 ∗ x = x, x ∈ X.
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We usually write gx instead of g ∗ x. A group action will be indicated as

GX. If G and X are finite sets, then we call the group action finite.
A group action GX determines a group homomorphism φ from G to

the symmetric group SX := {π | π : X → X, π is bijective} by

φ: G → SX , g 7→ φ(g) := [x 7→ gx],

which is called a permutation representation of G on X. Usually we
abbreviate φ(g) by writing ḡ, which is the permutation of X that maps x
to gx. For instance 1̄ is always the identity on X. Accordingly, the image
φ(G) is indicated by Ḡ. It is a permutation group on X, i.e. a subgroup
of SX .

If X is finite then Ḡ is finite since it is a subgroup of the symmetric
group SX which is of cardinality |X|!. Hence, whenever X is finite we can
speak of a finite group action.

A group action GX defines the following equivalence relation on X.
x1 ∼ x2 if and only if there is some g ∈ G such that x2 = gx1. The
equivalence classes G(x) with respect to ∼ are the orbits of G on X.
Hence, the orbit of x under the action of G is

G(x) = {gx | g ∈ G} .

The set of orbits of G on X is indicated by

G\\X := {G(x) | x ∈ X} .

It can be shown that the equivalence classes of any equivalence relation
can be represented as orbits under a suitable group action (cf. [5]).

Let GX be a group action. For each x ∈ X the stabilizer Gx of x is
the set of all group elements which do not change x, in other words

Gx := {g ∈ G | gx = x} .

This is a subgroup of G.
When investigating a rhythm we consider a sequence of beats. We are

only interested in the onsets, not in the duration of the different beats.
Moreover, we want to forget all information about the pitch.

We also assume that we have found a subdivision of the rhythm, i.e.
a regular pulsation, into equidistant beats such that all rhythmical events
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coincide with some of these beats. If the rhythm is covered by a pulsation
of n beats, then it can be described as a {0, 1}-vector of length n, whence
as a function f : {0, . . . , n − 1} → {0, 1}.

For example, the function f = (f(0), . . . , f(7)) = (1, 0, 0, 1, 1, 0, 1, 0)
describes a rhythm of length 8 which can be represented as

GS ˇ` (ˇ ˇ ˇ or GS (ˇ ? ? (ˇ (ˇ ? (ˇ ?
The cyclic group Cn generated by πn := (0, 1, . . . , n − 1) acts on the

set of all mappings from n := {0, 1, . . . , n − 1} to {0, 1} according to

Cn × {0, 1}n → {0, 1}n , (σ, f) 7→ f ◦ σ−1.

If we write f as a vector f = (f(0), . . . , f(n − 1)), then

f ◦ πj
n = (f(j), . . . , f(n − 1), f(0), . . . , f(j − 1)).

Hence, the orbit Cn(f) consists of all cyclic shifts of f . Using the natural
order 0 < 1, the set {0, 1}n is totally ordered by the lexicographical order.
For f, g ∈ {0, 1}n we say

f < g :⇐⇒ ∃i ∈ n : f(j) = g(j) for j < i and f(i) < g(i).

Usually we choose the smallest element of an orbit as its canonical rep-
resentative. For example the orbit of f = (10011010) under C8 contains
the vectors (10011010), (00110101), (01101010), (11010100), (10101001),
(01010011), (10100110), (01001101). Therefore, its standard representa-
tive is (00110101).

The stabilizer of f ∈ {0, 1}n is a subgroup of Cn, whence again a cyclic
group. We call f acyclic if its stabilizer consists of the identity only. If f
is acyclic, then the canonical representative of Cn(f) is called a Lyndon
word .

The function of the last example is acyclic, and (00110101) is a Lyndon
word. The vector f = (01100110) has a nontrivial stabilizer, since π4

8 6= id
and f = f ◦ π4

8.
We also identify a {0, 1}-vector f with the set f−1({1}) of pre-images

of 1. Then f is the characteristic function of f−1({1}). In this case it
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is sometimes helpful to assume that f−1({1}) ⊆ Zn := Z/nZ, the set of
residue classes modulo n.

The weight wt(f) of a {0, 1}-vector f is the number of components of
f which are equal to 1, thus

wt(f) =
∣

∣f−1({1})
∣

∣ .

The concept of a canon is described in [6] and was presented to the
author by G. Mazzola as described in [2, 3]. Here we rephrase this defi-
nition in the notion of {0, 1}-vectors. A canon of length n consisting of
t ≥ 1 voices Vi is a set {V1, . . . , Vt} of {0, 1}-vectors Vi 6= 0 of length n,
such that

1. Vi ∈ Cn(V1) for 1 ≤ i ≤ t,

2. V1 is acyclic,

3. the set of differences in K :=
⋃t

i=1 Vi generates Zn, i.e.

〈K − K〉 := 〈k − l | k, l ∈ K〉 = Zn.

Two canons {V1, . . . , Vt} and {W1, . . . , Ws} are called isomorphic if s = t
and if there exists some σ ∈ Cn and a permutation τ in the symmetric
group St such that σ(Vi) = Wτ(i) for 1 ≤ i ≤ t. The reader should be
aware of the fact that depending on the context we consider the voices of
a canon both as {0, 1}-vectors and as subsets of Zn.

Following the ideas presented in [2] and the notions introduced in [1],
the canon {V1, . . . , Vt} can also be described as a pair (V1, f) ∈ {0, 1}n ×
{0, 1}n, where V1 is the inner and f the outer rhythm of the canon.
The inner rhythm describes the rhythm of an arbitrary voice. The outer
rhythm determines how the different voices are distributed over the n
beats of a canon.

For example the canon with the following three voices V1 = (10011010),
V2 = (01010011), and V3 = (11010100) yields a score of the form

10011010
01010011
11010100.

Here we have marked the starting positions of the different voices with a
boldface 1. Therefore, the outer rhythm of this canon is f = (10010100).
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Given a canon (V1, f) of length n, there exists an isomorphic canon
(L, f ′) where L is a Lyndon word, the canonical representative of Cn(V1),
and f ′ is the canonical representative of Cn(f). The different voices of
the canon given by (L, f ′) are j + L for j ∈ f ′.

However not each pair (L, f) where L is a Lyndon word and f is a
{0, 1}-vector determines a canon of length n. In [2] we have proved the
following

Lemma 1. Let L 6= 0 be a Lyndon word, and let f be a {0, 1}-vector
both of length n. The pair (L, f) does not describe a canon if and only if
there exists an integer d > 1 such that d | n, d | k − l for all k, l ∈ L, and
d | k − l for all k, l ∈ f .

Based on this result the number of nonisomorphic canons of length n was
determined in [2].

A canon of length n is called a rhythmic tiling canon if Zn = .⋃t
i=1 Vi.

In other words, the voices are pairwise disjoint and cover entirely Zn.
The canon (L, f) is a rhythmic tiling canon if and only if L+ f = Zn and
|L| |f | = n, thus Zn is the direct sum L ⊕ f of L and f . Tiling canons
were enumerated in [3].

A rhythmic tiling canon described by (L, f) is a regular complementary
canon of maximal category (RCMC-canon) if both L and f are acyclic.
Dan T. Vuza was analyzing these canons in [10, 11, 12, 13]. Maybe the
term twofold acyclic rhythmic tiling canon would be more suggestive but
we stick to the standard terminology.

In general, let G be an abelian group. A subset A of G is called g-
periodic for g ∈ G if A = g + A, and it is called periodic if it is g-periodic
for some g ∈ G which is different from the neutral element. Otherwise
A is called aperiodic. (Subsets of Zn are aperiodic if and only if they are
acyclic.) The group G is called a Hajós group, or has the 2-Hajós property,
if in each factorization of G as A ⊕ B at least one factor is periodic.
In [8, 9] all finite abelian groups which are Hajós groups are classified.
Independently, Vuza described all Hajós groups Zn in [10, Theorem 2.2].

Vuza showed that RCMC-canons occur only for certain values of n,
actually only for those n where Zn is a non-Hajós-group. The smallest n
for which Zn is not a Hajós-group is n = 72. Zn is not a Hajós group if
and only if n can be expressed in the form p1p2n1n2n3 with p1, p2 primes,
ni ≥ 2 for 1 ≤ i ≤ 3, and gcd(n1p1, n2p2) = 1 (cf. [10, Proposition 2.2]).
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If Zn is not a Hajós group, Vuza presents an algorithm for constructing
RCMC canons. He describes how to find two acyclic vectors L and f of
length n, such that |L| = n1n2, |f | = p1p2n3, and L+f = Zn (cf. [10, proof
of Proposition 2.2]). RCMC-canons which can be constructed by Vuza’s
algorithm are called Vuza-constructible. In [3] we were enumerating Vuza-
constructible canons for certain lengths n, and it was also shown that there
exist RCMC-canons which are not Vuza-constructible.

2 New Canons From Old Canons

Now we define a composition of two {0, 1}-vectors. For f ∈ {0, 1}n and
g ∈ {0, 1}m let f [g] be the vector in {0, 1}nm where each 1 in f is replaced
by g and each 0 in f is replaced by 0m = 0 . . . 0, the sequence of m zeros.
Since each i ∈ nm can uniquely be written as i = qm + r with q ∈ n and
r ∈ m we obtain

f [g](i) = f [g](qm + r) = f(q) · g(r).

Lemma 2. For f, f ′ ∈ {0, 1}n and g ∈ {0, 1}m we have

1. wt(f [g]) = wt(f) wt(g).

2. If g 6= 0m, then the mapping {0, 1}n ∋ f 7→ f [g] ∈ {0, 1}nm is
injective.

3. f [g] ◦ πjm
nm = (f ◦ πj

n)[g].

4. f ≤ f ′ implies f [g] ≤ f ′[g].

5. If g 6= 0m and f < f ′, then f [g] < f ′[g].

6. If f and g are the canonical representatives of Cn(f) and Cm(g),
then f [g] is the canonical representative of Cnm(f [g]).

7. If f is a Lyndon word of length n > 1 and g 6= 0m is the canonical
representative of Cm(g), then f [g] is a Lyndon word.

Proof. The proof of the first assertion is obvious.
2.) Assume that f1[g] = f2[g] for f1, f2 ∈ {0, 1}n and g ∈ {0, 1}m, g 6= 0m.
Then for all (q, r) ∈ n × m we have f1(q)g(r) = f2(q)g(r). Since there
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exists some r0 ∈ m such that g(r0) 6= 0 we obtain f1(q) = f2(q) for all
q ∈ n, whence f1 = f2.
3.) Assume that i ∈ nm is expressed as i = qm+ r with q ∈ n and r ∈ m.
Then
(

f [g] ◦ πjm
nm

)

(i) = f [g](i + jm mod nm) = f [g]((q + j)m + r mod nm)

= f(q + j mod n)g(r) = (f ◦ πj
n)(q)g(r)

=
(

(f ◦ πj
n)[g]

)

(qm + r) =
(

(f ◦ πj
n)[g]

)

(i).

4.) If g = 0m, then f [g] = f ′[g] = 0nm. Assume that g 6= 0m, then there
exists some r0 ∈ m so that g(r0) = 1 and g(j) = 0 for 0 ≤ j < r0. Since
f < f ′ there exists some q0 ∈ n so that 0 = f(q0) < f ′(q0) = 1 and f(j) =
f ′(j) for 0 ≤ j < q0. Consequently f [g](i) = f ′[g](i) for 0 ≤ i < q0m + r0

and 0 = f(q0)g(r0) = f [g](q0m + r0) < f ′[g](q0m + r0) = f ′(q0)g(r0) = 1
and, therefore, f [g] < f ′[g]. This proves also the fifth assertion.
6.) We prove that f [g] ≤ f [g]◦πqm+r

nm for all (q, r) ∈ n×m. The assertion
is trivial for g = 0m, thus we restrict our attention to g 6= 0m. Then
g(m − 1) = 1.

Assume that f = 1n, then f ◦πq
n = f and f [g] = gn, the concatenation

of n copies of g. Since g is the canonical representative of its orbit,
g ◦ πr

m ≥ g and, consequently, f [g] ◦ πqm+r
nm = f [g ◦ πr

m] = (g ◦ πr
m)n ≥

gn = f [g]. We still have to consider the case that f 6= 1n. Then f(0) = 0
and f [g](i) = 0 for 0 ≤ i < m. By assumption f ≤ f ◦ πq

n, whence
f [g] ≤ (f ◦ πq

n)[g] = f [g] ◦ πqm
nm.

If f(q) = (f ◦ πq
n)(0) = 1, then

(

f [g] ◦ πqm+r
nm

)

(m − 1 − r) = f [g](m− 1 − r + qm + r)

= f(q)g(m− 1) = 1

> 0 = f [g](m− 1 − r),

whence f [g] ◦ πqm+r
nm > f [g].

Finally, if f(q) = (f◦πq
n)(0) = 0, then (f [g]◦πqm

nm)(i) = 0 for 0 ≤ i < m.
Thus,

f [g] ≤ f [g] ◦ πqm
nm ≤ f [g] ◦ πqm+1

nm ≤ . . . ≤ f [g] ◦ πqm+m−1
nm
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since by an application of πnm the leftmost 1 of f [g] ◦ πqm+j
nm , 0 ≤ j < m,

is moving to the left. (Since f [g] ◦ πqm
nm 6= 0 there exists some i0 so that

(f [g]◦πqm
nm)(i0) = 1 and (f [g]◦πqm

nm)(j) = 0 for 0 ≤ j < i0. By assumption
i0 ≥ m. Then the smallest i ∈ nm so that (f [g] ◦ πqm+r

nm )(i) = 1 is equal
to i0 − r > 0 for r ∈ m.)
7.) We just have to prove that f [g] is acyclic. Since f is a Lyndon word
we have f(0) = 0, f(n − 1) = 1, and according to the third and fifth
assertion, f [g] ◦ πqm

nm = (f ◦ πq
n)[g] < f [g]. We still have to prove that

f [g] 6= f [g] ◦ πqm+r
nm for q ∈ n and r ∈ m, r 6= 0. From the definition

of f [g] and since g 6= 0m is a canonical representative it follows that, if
f [g](im + j) = 1 for some j ∈ m, then f [g](im + m − 1) = 1.

Since f is a Lyndon word of length n > 1, there exists some q0 ∈ n so
that f(q0) = 1 and f(q0+1 mod n) = 0. Therefore, f [g](q0m+m−1) = 1
and moreover f [g]((q0 + 1)m + j mod nm) = 0 for 0 ≤ j < m. Assuming
on the contrary that f [g] = f [g] ◦ πqm+r

nm for some r 6= 0, we have for
j0 = q0m + m − 1 − (qm + r) mod nm

(f [g] ◦ πqm+r
nm )(j0) = f [g](q0m + m − 1) = 1.

Therefore, also f [g](j0) = 1. Since j0 can be represented as q′m + r′ with
r′ = m − 1 − r < m− 1 we obtain from the construction of f [g] that also
f [g](q′m + m − 1) = 1. Using the original definition of j0, this can be
written as

1 = f [g](q′m + m − 1) = f [g](j0 + m − 1 − r′)

= f [g](q0m + m − 1 − (qm + r) + r mod nm).

Since f [g] = f [g] ◦ πqm+r
nm , this is equal to

(f [g] ◦ πqm+r
nm )(q0m + m − 1 − (qm + r) + r mod nm)

and consequently

f [g]((q0 + 1)m + (r − 1) mod nm) = 1.

Since r−1 ∈ m, this is a contradiction to f [g]((q0+1)m+j mod nm) = 0
for 0 ≤ j < m. 2

As an immediate consequence we obtain the following
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Theorem 3. For i = 1, 2 let (Li, fi) be a canon of length ni.

1. Then (L1[L2], f1[f2]) is a canon of length n1n2.

2. If (L1, f1) is a rhythmic tiling canon and (L2, f2) is a rhythmic tiling
canon, then (L1[L2], f1[f2]) is a rhythmic tiling canon.

3. If (L1, f1) is an RCMC-canon and (L2, f2) is a rhythmic tiling canon,
then (L1[L2], f1[f2]) is an RCMC-canon.

3 A Backtracking Algorithm

Now we describe an algorithm which allows to find for any given inner
rhythm L, which is a Lyndon word, all outer rhythms f such that (L, f)
is a rhythmic tiling canon. We want to apply this algorithm for finding
all RCMC-canons of given length.

In [10, Theorem 2.3] it is shown that if Zn = A⊕B, then Zn = (kA)⊕B
for each k 6= 0 relatively prime to n. This means that the pair (L, f)
indicates an RCMC canon if and only if (kL + r, f) indicates an RCMC-
canon for k, r ∈ Zn, where k and n are relatively prime integers. Thus,
instead of L it is possible to use the {0, 1}-vector L̃ given by L̃(i) :=
L(−i − 1 mod n), whence L̃(i) = L(n − 1 − i), i ∈ Zn. Since L is a
Lyndon word, L̃(0) = 1.

The span of a rhythm f of length n with f(0) = 1 is defined to be
j + 1 for j = max {i ∈ n | f(i) 6= 0}. Here is a short example. The
rhythm 11000000 has span 2 and its cyclic shift 10000001 has span 8. For
the backtracking algorithm it is important to consider rhythms of short
span. Due to the construction above it is easy to show that L̃ has the
shortest span of all rhythms in the orbit Cn(L̃).

There is still another useful way for representing a rhythm. Assume
that f is a {0, 1}-vector of length n with exactly k ≥ 2 entries equal to 1.
Thus, there are integers 0 ≤ i0 < i1 < . . . < ik−1 ≤ n−1 so that f(ij) = 1
for 0 ≤ j < k and f(i) = 0 for i ∈ n \ {i0, . . . , ik−1}. With f we associate

the function f̂ : k → Z>0 given by

f̂(j) :=

{

ij − ij−1 for j > 0,
n − (ik−1 − i0) for j = 0.

We call f̂ the interval representation of f .
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Lemma 4. Let f be a {0, 1}-vector of length n with k ≥ 2 entries equal
to 1. Then

•
∑k−1

i=0 f̂(i) = n.

• If h: k → Z>0 satisfies
∑k−1

i=0 h(i) = n, then there exists a {0, 1}-
vector v so that v̂ = h.

• For each v ∈ Cn(f) the interval representation v̂ belongs to the orbit

Ck(f̂), where Ck acts on Z
k
>0 by

Ck × Z
k
>0 → Z

k
>0, (σ, h) 7→ h ◦ σ−1.

This is a natural generalization of the group action introduced for
{0, 1}-vectors.

• For each h ∈ Ck(f̂) there exists some v ∈ Cn(f) so that h = v̂.

• f is acyclic if and only if f̂ is acyclic.

• If f is the canonical representative of the orbit Cn(f), then f̂ ≥ h

with respect to the lexicographical order for all h ∈ Ck(f̂). Therefore,

f̂(0) ≥ f̂(i) for i ∈ k.

Assume that h: k → Z>0 satisfies
∑k−1

i=0 h(i) = n. The last assertion
of Lemma 4 motivates to choose the greatest vector with respect to the
lexicographical order as the canonical representative of the orbit Ck(h).

In the following we use the convention that the empty sum always
yields 0. Let (L, f) be an RCMC-canon where f contains exactly k entries

equal to 1, and let L̃ and f̂ be as above. For i ∈ k the union of the first
i + 1 voices, considered as subsets of Zn, will be denoted by

SL̃,f̂ ,i :=
i
⋃

r=0

(

(

r−1
∑

j=0

f̂(j)
)

+ L̃

)

.

We collect some properties of the canon (L, f):

1. Since each RCMC-canon is a rhythmic tiling canon we have
(

(

i
∑

j=0

f̂(j)
)

+ L̃

)

∩ SL̃,f̂ ,i = ∅ (Ti)

for all i ∈ k − 1 and SL̃,f̂ ,k−1 = Zn.
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2. Let s denote the span of L̃ and assume that i < k−2. If
∑i

j=0 f̂(j) <

s, then either
∑i+1

j=0 f̂(j) < s and (Ti+1) is satisfied or

i+1
∑

j=0

f̂(j) = min
{

t ≥ s | t 6∈ SL̃,f̂ ,i+1

}

and (Ti+1) is satisfied.

If
∑i

j=0 f̂(j) ≥ s then

{

s, s + 1, . . . ,
i
∑

j=0

f̂(j)

}

⊂ S
L̃,f̂ ,i+1.

In this situation it is still possible that there exist some integers in
s which are not contained in SL̃,f̂ ,i+1. Moreover, the value f̂(i + 1)
satisfies

i+1
∑

j=0

f̂(j) = min
{

t ≥ s | t 6∈ S
L̃,f̂ ,i+1

}

and (Ti+1).

3. From f̂(0) ≥ f̂(i), i ∈ k, we derive that k · f̂(0) ≥ n, whence

f̂(0) ≥ n/k.

Now we are in a position to describe the main aspects of the back-
tracking algorithm. We assume that the Lyndon word L of length n > 1
which is a {0, 1}-vector with ℓ > 1 entries equal to 1 is considered to be
the inner rhythm of an RCMC-canon. Then necessarily ℓ is a divisor of
n. Let k := n/ℓ. In the algorithm we use the rhythm L̃(i) = L(n− 1− i),
i ∈ Zn, instead of L. Let s be the span of L̃.

The backtracking tries to find the interval representation of all rhythms
f so that (L, f) is an RCMC-canon. Since we are only interested in
non-isomorphic canons we restrict ourselves to interval representations
belonging to the set

H :=

{

h: k → Z>0

∣

∣

∣

k−1
∑

i=0

h(i) = n, h(0) ≥ h(i), i ∈ k

}

.
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We assume that we have found a vector (h(0), . . . , h(i − 1)), 0 ≤ i <
k − 1, so that the sets SL̃,h,j, 0 ≤ j ≤ i contain (j + 1) · ℓ elements. Then
we determine the set of all possible values h(i) in the following way:

Case 1. If
∑i−1

j=0 h(j) < s − 1, then let

Ui :=

{

t
∣

∣

∣

i−1
∑

j=0

h(j) < t < s − 1,
(

t + L̃
)

∩ SL̃,h,i = ∅

}

,

t0 := min
{

t ≥ s | t 6∈ SL̃,h,i

}

and

Vi :=

{

{t0} if
(

t0 + L̃
)

∩ SL̃,h,i = ∅,

∅ else.

If i = 0, then the set of all possible values for h(0) is given by

H0 :=
{

t ∈ U0 ∪ V0

∣

∣

∣
t ≥ n/k

}

.

Otherwise, the set of all possible values for h(i) is given by

Hi :=

{

t ∈ Ui ∪ Vi

∣

∣

∣
t −

i−1
∑

j=0

h(j) ≤ h(0)

}

.

Case 2. If
∑i−1

j=0 h(j) ≥ s, then the set of all possible values for h(i) is

Hi :=

{

t ∈ Vi

∣

∣

∣
t −

i−1
∑

j=0

h(j) ≤ h(0)

}

.

Thus, in case 2 the set Hi is either empty or contains exactly one element.
In order to extend the vector (h(0), . . . , h(i − 1)) by appending the

next entry, we choose h(i) as the smallest element of Hi.
If we have determined (h(0), . . . , h(k−2)) then the value of h(k−1) is

also determined by h(k−1) = n−
∑k−2

i=0 h(i). For that reason it is always
enough to determine the sets H0, . . . , Hk−2. If h(k − 1) > h(0) then h
does not belong to H.
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There are two situations in which it is impossible to extend the vector
(h(0), . . . , h(i−1)). Either the vector h has already full length, i.e. i−1 =
k − 2 (since then h(k − 1) is uniquely determined), or Hi = ∅. In both
situations the backtracking algorithm tries to change the last entry of the
vector (h(0), . . . , h(i−1)) by replacing h(i−1) by the smallest element in
Hi−1 which is greater than the present h(i− 1). If there is no successor of
h(i−1) in Hi−1, then the algorithm tries to find a successor of h(i−2) and
so on. Assume that a successor of h(i− r) was found, then the algorithm
tries to extend the new vector (h(0), . . . , h(i − r)) by appending suitable
values h(i − r + 1), h(i − r + 2), . . .. The reader should realize that since
we have changed the value of h(i − r) also the sets Hi−r+j for j ≥ 1 are
changed.

The backtracking algorithm terminates when it cannot find a successor
for h(0).

As a matter of fact, this algorithm yields rhythmic tiling canons, not
necessarily RCMC-canons. In certain situations it produces just one rep-
resentative of an isomorphism class, in some other situations it can hit
an isomorphism class several times. So we still have to check the output
of this algorithm, delete all rhythmic tiling canons which are not RCMC
and delete vectors yielding canons isomorphic to canons already listed.
This can be done the following way: If h(0) > h(i) for all 1 ≤ i < k, then
h is acyclic and due to the construction of our algorithm it is the only
representative of its orbit listed by this algorithm. If there exists some i,
1 ≤ i < k, so that h(0) = h(i), then we have to check whether h has cyclic
symmetries. If so, it is deleted from the list. When h(0) occurs λ times in
h and h is acyclic, then there are at most λ vectors in the output of the
algorithm belonging to the orbit Ck(h). In each of these vectors the value
h(0) occurs exactly λ times. In order to obtain nonisomorphic canons,
separately for each λ > 1 we have to determine the canonical orbit rep-
resentatives of those vectors in the algorithm’s output which contain the
value h(0) in exactly λ positions.

For example, there exist only three different inner rhythms of Vuza-
constructible RCMC-canons of length 108 with exactly 6 beats. The
interval representation of these canons is given by (57, 12, 12, 3, 12, 12),
(33, 24, 3, 21, 3, 24) and (27, 21, 12, 15, 12, 21). If L̃ denotes any of these
rhythms, the backtracking algorithm produces the following list of all
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possible outer rhythms f̂ in interval representation so that (L̃, f̂) is an
RCMC-canon of length 108.

30 4 1 1 7 1 8 1 13 6 16 1 8 1 4 4 1 1 18 7 6 4 1 8 9 1 7 6 5 17 1 7 1 5 4 1

30 2 2 2 5 2 7 2 14 6 14 2 7 2 5 2 2 2 18 7 6 1 4 5 9 4 7 6 5 14 4 5 2 6 1 4

30 1 4 1 4 4 5 4 13 6 13 4 5 4 4 1 4 1 18 7 4 5 1 1 7 11 11 6 1 7 9 2 7 4 6 1

30 1 1 4 4 1 8 1 16 6 13 1 8 1 7 1 1 4 18 7 4 2 5 2 9 7 7 6 5 11 7 2 5 4 2 5

29 5 1 1 7 2 7 2 11 6 17 2 7 2 2 5 1 1 18 7 1 6 2 2 7 11 8 6 4 7 9 2 7 1 6 4

29 2 4 1 4 5 4 5 11 6 14 5 4 5 2 2 4 1 18 7 1 5 4 1 8 10 7 6 5 8 9 1 7 1 5 5

29 1 4 2 2 5 4 5 14 6 11 5 4 5 4 1 4 2 18 5 6 5 2 7 9 2 5 6 7 16 2 5 2 4 5 2

29 1 4 1 1 7 9 13 1 5 1 16 9 4 1 4 1 1 18 5 6 2 5 4 9 5 5 6 7 13 5 4 1 6 2 5

29 1 1 5 2 2 7 2 17 6 11 2 7 2 7 1 1 5 18 5 5 4 2 2 5 13 10 6 2 5 9 4 5 5 6 2

29 1 1 4 1 4 9 16 1 5 1 13 9 7 1 1 4 1 18 5 5 1 7 1 9 8 5 6 7 10 8 1 4 5 1 7

28 6 1 1 8 1 8 1 10 6 19 1 8 1 1 6 1 1 18 5 2 6 1 4 5 13 7 6 5 5 9 4 5 2 6 5

28 4 2 2 5 4 5 4 10 6 16 4 5 4 1 4 2 2 18 5 2 4 5 2 7 11 5 6 7 7 9 2 5 2 4 7

28 2 5 1 1 7 2 7 13 6 10 7 2 7 2 2 5 1 18 4 7 2 4 1 4 14 11 6 1 4 9 5 4 7 6 1

28 2 4 1 1 8 9 11 2 4 2 17 9 2 2 4 1 1 18 4 6 7 1 8 9 1 4 6 8 17 1 4 4 2 7 1

28 2 2 4 1 4 5 4 16 6 10 4 5 4 5 2 2 4 18 4 6 4 4 5 9 4 4 6 8 14 4 4 1 5 4 4

28 2 2 2 2 5 9 14 2 4 2 14 9 5 2 2 2 2 18 4 6 1 7 2 9 7 4 6 8 11 7 2 2 6 1 7

28 1 6 1 1 8 1 8 11 6 11 8 1 8 1 1 6 1 18 4 4 5 1 4 4 14 8 6 4 4 9 5 4 4 6 4

28 1 5 2 2 7 2 7 10 6 13 7 2 7 1 1 5 2 18 4 4 2 7 1 8 10 4 6 8 8 9 1 4 4 2 8

28 1 5 1 1 9 9 10 1 5 1 19 9 1 1 5 1 1 18 4 1 6 2 5 4 14 5 6 7 4 9 5 4 1 6 7

28 1 1 6 1 1 8 1 19 6 10 1 8 1 8 1 1 6 18 4 1 5 4 4 5 13 4 6 8 5 9 4 4 1 5 8

28 1 1 5 1 1 9 19 1 5 1 10 9 9 1 1 5 1 18 2 8 1 5 2 2 16 10 6 2 2 9 7 2 8 6 2

28 1 1 4 2 2 9 17 2 4 2 11 9 8 1 1 4 2 18 2 6 8 2 7 9 2 2 6 10 16 2 2 5 1 8 2

26 6 2 2 7 2 7 2 8 6 20 2 7 1 1 5 2 2 18 2 6 5 5 4 9 5 2 6 10 13 5 2 2 4 5 5

26 5 1 4 4 5 4 5 8 6 17 5 4 4 1 4 1 4 18 2 6 2 8 1 9 8 2 6 10 10 8 1 1 6 2 8

26 4 4 1 1 7 1 8 14 6 8 8 1 8 1 4 4 2 18 2 5 4 2 5 2 16 7 6 5 2 9 7 2 5 6 5

26 4 2 2 2 7 9 10 4 2 4 16 9 1 4 2 2 2 18 2 5 1 8 2 7 11 2 6 10 7 9 2 2 5 1 10

26 4 1 4 1 4 4 5 17 6 8 5 4 5 4 4 1 5 18 2 2 6 1 7 2 16 4 6 8 2 9 7 2 2 6 8

26 4 1 1 4 4 9 13 4 2 4 13 9 4 4 1 1 4 18 2 2 4 5 5 4 14 2 6 10 4 9 5 2 2 4 10

26 2 6 1 1 8 1 9 10 6 10 9 1 8 1 1 6 2 18 1 9 1 6 1 1 17 11 6 1 1 9 8 1 10 6 1

26 2 4 4 1 8 1 8 8 6 14 8 1 7 1 1 4 4 18 1 7 2 4 4 1 17 8 6 4 1 9 8 1 7 6 4

26 2 4 2 2 9 9 8 2 4 2 20 8 1 1 4 2 2 18 1 6 10 1 8 9 1 1 6 11 17 1 1 6 1 9 1

26 2 2 5 1 1 7 2 20 6 8 2 7 2 7 2 2 6 18 1 6 7 4 5 9 4 1 6 11 14 4 1 4 2 7 4

26 2 2 4 1 1 8 20 2 4 2 8 9 9 2 2 4 2 18 1 6 4 7 2 9 7 1 6 11 11 7 1 1 5 4 7

26 2 2 2 4 1 9 16 4 2 4 10 9 7 2 2 2 4 18 1 6 1 9 1 8 10 1 6 11 8 9 1 1 6 1 10

25 6 4 1 8 1 8 1 7 6 22 1 7 1 1 4 4 1 18 1 4 5 1 7 1 17 5 6 7 1 9 8 1 4 6 7

25 6 1 4 5 4 5 4 7 6 19 4 5 2 2 4 1 4 18 1 4 2 7 4 5 13 1 6 11 5 9 4 1 4 2 11

25 5 4 1 1 7 1 9 13 6 7 9 1 8 1 4 5 1 18 1 1 6 2 8 1 17 2 6 10 1 9 8 1 1 6 10

25 5 2 2 2 5 2 7 16 6 7 7 2 7 2 5 2 4 18 1 1 5 4 7 2 16 1 6 11 2 9 7 1 1 5 11

25 5 1 4 1 8 9 8 5 1 5 17 8 1 4 1 4 1 17 13 4 1 1 7 9 1 13 5 1 16 1 8 5 4 1 1

25 5 1 1 4 5 9 11 5 1 5 14 9 2 5 1 1 4 17 13 1 4 1 4 9 4 13 5 1 13 4 5 8 1 4 1

25 4 5 1 1 7 2 9 11 6 8 9 2 7 2 2 6 1 17 11 2 5 1 1 9 7 13 5 1 10 7 2 9 2 5 1

25 4 2 5 2 7 2 7 7 6 16 7 2 5 2 2 2 5 17 9 4 4 1 1 7 9 14 5 1 8 8 1 8 5 4 2

25 4 2 4 1 9 9 7 4 2 4 19 7 2 2 2 4 1 17 9 4 1 4 1 4 9 17 5 1 8 5 4 5 8 1 5

25 4 1 4 2 2 5 4 19 6 7 4 5 4 5 4 1 6 17 9 2 6 1 1 9 9 10 6 1 9 9 1 9 1 6 2

25 4 1 4 1 1 7 22 1 5 1 7 9 9 4 1 5 1 17 8 5 4 1 1 7 10 13 5 1 7 9 1 8 5 5 1

25 4 1 1 5 2 9 14 5 1 5 11 9 5 4 1 1 5 17 8 1 5 4 1 9 9 7 6 4 9 9 1 7 2 4 5

25 1 6 2 2 7 2 9 8 6 11 9 2 7 1 1 5 4 17 6 7 4 2 7 9 1 6 7 6 16 1 6 2 5 4 2

25 1 5 4 1 8 1 9 7 6 13 9 1 7 1 1 4 5 17 6 7 1 5 4 9 4 6 7 6 13 4 5 1 7 1 5

25 1 5 1 4 9 9 7 1 5 1 22 7 1 1 4 1 4 17 6 5 2 6 1 9 7 6 7 6 10 7 2 4 5 2 6

25 1 4 4 1 1 7 1 22 6 7 1 8 1 8 1 4 6 17 6 2 5 4 2 7 10 6 7 6 7 9 1 6 2 5 6

25 1 4 2 2 2 7 19 4 2 4 7 9 9 1 4 2 4 17 5 8 1 4 1 4 13 13 5 1 4 9 4 5 8 5 1

25 1 4 1 4 1 8 17 5 1 5 8 9 8 1 4 1 5 17 5 4 2 7 1 9 9 4 6 7 9 9 1 4 5 1 8

23 7 2 2 2 5 2 9 14 6 5 9 2 7 2 5 4 2 17 5 1 7 1 5 4 13 6 7 6 4 9 4 5 1 7 6

23 7 1 1 4 4 1 8 17 6 5 8 1 8 1 7 1 5 17 2 9 2 5 1 1 16 13 5 1 1 9 7 2 11 5 1

23 6 5 2 7 2 7 2 5 6 23 2 5 2 2 2 5 2 17 2 6 1 9 1 9 9 1 6 10 9 9 1 1 6 2 9

23 6 2 5 4 5 4 5 5 6 20 5 4 1 4 2 2 5 17 2 4 5 8 1 8 8 1 5 14 9 7 1 1 4 4 9

23 6 1 4 2 7 9 7 6 1 6 16 7 2 4 1 4 2 17 2 4 5 2 6 1 16 6 7 6 1 9 7 2 4 7 6

23 6 1 1 5 4 9 10 6 1 6 13 9 1 6 1 1 5 17 1 5 11 2 7 9 1 1 5 13 16 1 1 5 2 9 2

23 5 4 2 2 5 4 9 10 6 7 9 4 5 4 1 6 2 17 1 5 8 5 4 9 4 1 5 13 13 4 1 4 1 8 5

23 5 2 2 4 1 4 5 20 6 5 5 4 5 4 5 2 6 17 1 5 5 8 1 9 7 1 5 13 10 7 1 1 4 5 8

23 5 2 2 2 2 5 23 2 4 2 5 9 9 5 2 4 2 17 1 5 2 9 2 7 10 1 5 13 7 9 1 1 5 2 11
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23 5 1 7 1 8 1 8 5 6 17 8 1 4 4 1 1 7 17 1 4 1 8 5 4 13 1 5 13 4 9 4 1 4 1 13

23 5 1 5 2 9 9 5 5 1 5 20 5 4 1 1 5 2 17 1 1 4 5 8 1 16 1 5 13 1 9 7 1 1 4 13

23 5 1 1 6 1 9 13 6 1 6 10 9 4 5 1 1 6 16 14 4 1 1 8 8 1 13 4 2 16 1 9 4 4 1 1

23 2 6 1 4 5 4 9 7 6 10 9 4 5 2 2 4 5 16 14 2 2 2 5 9 2 14 4 2 14 2 7 7 2 2 2

23 2 5 1 1 4 5 20 5 1 5 5 9 9 2 5 1 5 16 13 1 4 2 2 9 5 14 4 2 11 5 4 9 1 4 2

23 2 4 5 2 7 2 9 5 6 14 9 2 5 2 2 2 7 16 10 4 4 1 1 8 8 14 4 2 8 8 1 9 4 4 2

23 2 4 1 4 2 7 16 6 1 6 7 9 7 2 4 1 6 16 9 5 4 1 1 8 9 13 4 2 7 9 1 9 4 5 1

22 8 1 4 1 4 4 9 13 6 4 9 4 5 4 4 5 1 16 9 5 2 2 2 5 9 16 4 2 7 7 2 7 7 2 4

22 8 1 1 4 4 1 9 16 6 4 9 1 8 1 7 2 4 16 9 4 5 1 1 9 9 11 5 1 8 9 2 9 2 6 1

22 7 2 4 1 4 5 9 11 6 5 9 5 4 5 2 6 1 16 9 1 6 2 2 9 9 8 6 2 9 9 2 8 1 5 4

22 7 1 1 5 2 2 7 19 6 4 7 2 7 2 7 1 6 16 7 7 2 2 2 5 11 14 4 2 5 9 2 7 7 4 2

22 6 4 4 5 4 5 4 4 6 22 4 4 1 4 1 4 4 16 7 2 4 5 2 9 9 5 6 5 9 9 2 5 4 2 7

22 6 2 5 1 8 9 5 6 2 6 17 5 4 2 2 5 1 16 6 8 5 1 8 8 1 5 8 6 16 1 5 4 4 5 1

22 6 2 2 4 5 9 8 6 2 6 14 8 1 5 2 2 4 16 6 8 2 4 5 9 2 6 8 6 14 2 6 1 7 2 4

22 6 1 7 2 7 2 7 4 6 19 7 2 2 5 1 1 7 16 6 7 1 6 2 9 5 6 8 6 11 5 4 2 7 1 6

22 6 1 6 1 9 9 4 6 1 6 19 4 5 1 1 6 1 16 6 4 4 5 1 8 8 6 8 6 8 8 1 5 4 4 6

22 6 1 1 6 2 9 11 6 2 6 11 9 2 6 1 1 6 16 6 1 7 2 4 5 11 6 8 6 5 9 2 6 1 7 6

22 4 5 1 4 4 5 9 8 6 8 9 5 4 4 1 5 4 16 4 9 1 4 2 2 14 14 4 2 2 9 5 4 10 4 2

22 4 4 1 1 4 4 22 4 2 4 4 9 9 4 4 2 4 16 4 5 1 8 2 9 9 2 6 8 9 9 2 2 6 1 9

22 4 2 7 1 8 1 9 4 6 16 9 1 4 4 1 1 8 16 4 2 7 1 6 2 14 6 8 6 2 9 5 4 2 8 6

22 4 2 2 5 1 8 14 6 2 6 8 9 5 4 2 2 6 16 2 4 13 1 8 8 1 1 4 14 16 1 1 4 4 9 1

22 1 6 2 5 4 5 9 5 6 11 9 5 4 1 4 2 7 16 2 4 10 4 5 9 2 2 4 14 14 2 2 4 1 9 4

22 1 6 1 1 5 4 19 6 1 6 4 9 9 1 6 1 6 16 2 4 7 7 2 9 5 2 4 14 11 5 2 2 2 7 7

22 1 5 4 4 5 4 9 4 6 13 9 4 4 1 4 1 8 16 2 4 4 9 1 8 8 2 4 14 8 8 1 1 4 4 10

22 1 5 2 2 4 5 17 6 2 6 5 9 8 1 5 2 6 16 2 4 1 9 4 5 11 2 4 14 5 9 2 2 4 1 13

20 9 1 4 2 2 5 9 14 6 2 9 5 4 5 5 4 2 16 2 2 2 7 7 2 14 2 4 14 2 9 5 2 2 2 14

20 9 1 1 5 2 2 9 17 6 2 9 2 7 2 8 1 5 16 1 6 2 9 2 9 8 1 5 11 9 9 1 1 5 4 9

20 8 1 5 2 2 7 9 10 6 4 9 7 2 7 1 6 2 16 1 5 4 9 1 9 7 2 4 13 9 8 1 1 4 5 9

20 8 1 1 6 1 1 8 20 6 2 8 1 8 1 8 2 6 14 9 7 2 2 2 7 9 14 2 4 5 9 2 9 5 4 2

20 6 4 4 2 7 9 4 6 4 6 16 4 5 1 4 4 2 14 9 5 4 2 2 9 9 10 4 2 7 9 4 9 1 6 2

20 6 4 1 5 4 9 7 6 4 6 13 7 2 4 4 1 5 14 9 2 6 1 4 9 9 7 6 1 9 9 4 7 2 4 5

20 6 2 6 2 9 9 2 6 2 6 20 2 6 1 1 6 2 14 8 1 5 4 4 9 9 4 6 4 9 9 4 4 5 1 8

20 6 2 2 6 1 9 10 6 4 6 10 9 1 6 2 2 6 14 6 10 4 2 7 7 2 4 10 6 14 2 4 5 5 4 2

20 5 4 2 5 2 7 9 7 6 7 9 7 2 5 2 4 5 14 6 10 1 5 4 9 1 6 10 6 13 1 6 2 8 1 5

20 5 1 8 2 7 2 9 2 6 17 9 2 2 5 1 1 9 14 6 8 2 6 1 9 4 6 10 6 10 4 5 1 8 2 6

20 5 1 4 4 2 7 13 6 4 6 7 9 4 5 1 4 6 14 6 5 5 4 2 7 7 6 10 6 7 7 2 4 5 5 6

20 2 6 1 7 2 7 9 4 6 10 9 7 2 2 5 1 8 14 6 2 8 1 5 4 10 6 10 6 4 9 1 6 2 8 6

20 2 4 5 5 4 5 9 2 6 14 9 5 2 2 4 1 9 14 5 4 2 7 4 9 9 1 6 7 9 9 4 1 6 2 9

20 2 4 4 1 5 4 16 6 4 6 4 9 7 2 4 4 6 14 5 1 8 2 6 1 13 6 10 6 1 9 4 5 1 10 6

19 9 2 5 1 1 7 9 13 6 1 9 7 2 7 4 5 1 14 2 6 1 9 4 9 7 2 4 10 9 9 2 2 4 5 9

19 9 2 2 4 1 4 9 16 6 1 9 4 5 4 7 2 4 13 9 8 1 4 1 8 9 13 1 5 4 9 4 9 4 5 1

19 9 1 6 1 1 8 9 11 6 2 9 8 1 8 2 6 1 13 9 7 2 4 1 9 9 11 2 4 5 9 5 9 2 6 1

19 9 1 1 6 1 1 9 19 6 1 9 1 8 1 9 1 6 13 9 4 5 1 4 9 9 8 5 1 8 9 5 8 1 5 4

19 7 2 4 4 1 8 9 8 6 5 9 8 1 7 1 5 4 13 9 1 6 2 5 9 9 5 6 2 9 9 5 5 4 2 7

19 6 5 5 1 8 9 2 6 5 6 17 2 6 1 4 5 1 13 7 2 4 5 5 9 9 2 6 5 9 9 5 2 6 1 9

19 6 5 2 4 5 9 5 6 5 6 14 5 4 2 5 2 4 13 6 11 5 1 8 5 4 2 11 6 13 4 2 7 4 5 1

19 6 4 6 1 9 9 1 6 4 6 19 1 6 2 2 6 1 13 6 11 2 4 5 8 1 5 11 6 13 1 5 4 7 2 4

19 6 4 1 6 2 9 8 6 5 6 11 8 1 5 4 1 6 13 6 10 1 6 2 9 2 6 11 6 11 2 6 1 9 1 6

19 6 1 4 5 1 8 11 6 5 6 8 9 2 6 1 4 6 13 6 7 4 5 1 8 5 6 11 6 8 5 4 2 7 4 6

19 4 5 1 7 1 8 9 5 6 8 9 8 1 4 4 2 7 13 6 4 7 2 4 5 8 6 11 6 5 8 1 5 4 7 6

19 4 2 7 4 5 4 9 1 6 16 9 4 1 4 2 2 9 13 6 1 9 1 6 2 11 6 11 6 2 9 2 6 1 10 6

19 4 2 5 2 4 5 14 6 5 6 5 9 5 4 2 5 6 13 4 5 1 8 5 9 8 1 5 8 9 9 4 1 5 4 9

19 1 6 2 8 1 8 9 2 6 11 9 8 1 1 6 1 9 13 1 6 2 9 5 9 5 4 2 11 9 9 1 4 2 7 9

19 1 5 4 7 2 7 9 1 6 13 9 7 1 1 5 2 9 11 9 8 1 5 2 9 9 10 1 5 4 9 7 9 1 6 2

19 1 5 4 1 6 2 17 6 5 6 2 9 8 1 5 5 6 11 9 5 4 2 5 9 9 7 4 2 7 9 7 7 2 4 5

18 11 5 1 1 7 9 2 11 6 1 16 2 7 4 5 1 1 11 9 2 6 1 7 9 9 4 6 1 9 9 7 4 5 1 8

18 11 2 4 1 4 9 5 11 6 1 13 5 4 7 2 4 1 11 8 1 5 4 7 9 9 1 6 4 9 9 7 1 6 2 9

18 10 6 1 1 8 9 1 10 6 2 17 1 8 2 6 1 1 11 5 4 2 7 7 9 7 2 4 7 9 9 5 2 4 5 9

18 10 4 2 2 5 9 4 10 6 2 14 4 5 5 4 2 2 11 2 6 1 9 7 9 4 5 1 10 9 9 2 5 1 8 9

18 10 1 6 1 1 9 8 11 6 1 10 8 1 9 1 6 1 10 9 9 1 6 1 9 9 10 1 6 2 9 8 9 2 6 1

18 10 1 5 2 2 9 7 10 6 2 11 7 2 8 1 5 2 10 9 7 2 4 4 9 9 8 2 4 5 9 8 8 1 5 4

18 8 6 2 2 7 9 2 8 6 4 16 2 7 1 6 2 2 10 9 4 5 1 7 9 9 5 5 1 8 9 8 5 4 2 7

18 8 5 1 4 4 9 5 8 6 4 13 5 4 4 5 1 4 10 9 1 6 2 8 9 9 2 6 2 9 9 8 2 6 1 9

18 8 2 6 1 1 8 10 10 6 2 8 9 1 8 2 6 2 10 7 2 4 5 8 9 8 1 5 5 9 9 7 1 5 4 9

18 8 2 4 4 1 9 8 8 6 4 10 8 1 7 2 4 4 10 4 5 1 8 8 9 5 4 2 8 9 9 4 4 2 7 9
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This list contains 252 outer rhythms f̂ . In [3] we have shown that for
each of the 3 inner rhythms consisting of 6 beats, which were mentioned
above, there are 180 different outer rhythms of Vuza-constructible canons.
For instance, there are 48 interval representations f̂ starting with 18.
They do not occur in the list of all Vuza-constructible canons. Thus,
together with L̃ they are RCMC canons which are not Vuza-constructible.

4 Complete Lists of RCMC-Canons

If (L, f) is a rhythmic tiling canon of length n, then the weights of L and
f are divisors of n. For the complete classification of RCMC canons the
following theorem is crucial.

Theorem 5. (Sands [7, Theorem 2]) If G is a finite cyclic group,
G = A ⊕ B and A has pµ elements, where p is a prime, then either A or
B is periodic.

We obtain the following formulation for rhythmic tiling canons.

Corollary 6. Assume that a rhythmic tiling canon is given by the pair
(L, f). If wt(L) or wt(f) is a prime power, then f has cyclic symmetries.
Thus, (L, f) is not an RCMC-canon.

This theorem can be used in the following way to find complete lists of
RCMC-canons of length n = 72 and n = 108. First we find all suitable
decompositions of n as a product of two positive integers, n = rs. If both
r and s are not powers of a prime we assume that r ≤ s and continue with
the following construction. We determine all Lyndon words L of length n
and weight r over {0, 1}. They serve as possible inner rhythms. Using the
backtracking algorithm, we try to find all outer rhythms f so that (L, f)
is an RCMC canon. In order to decrease the number of possible inner
rhythms which must be input to the algorithm, we collect these Lyndon
words into orbits under the action of the affine group. (From [10, Theorem
2.3] it is easy to deduce that the image of an RCMC canon under an affine
transformations is again an RCMC canon.) From each orbit under the
affine group we choose one representative L and determine all acyclic
outer rhythms f , such that L + f = Zn.
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For n = 72 we have to consider the composition 72 = 6 · 12. There
are 2 169 882 Lyndon words of length 72 and weight 6 over {0, 1}. There
remain just 3 Lyndon words which can be extended to an RCMC-canon.
For each Lyndon word there exist (the same 6) outer rhythms which can
be used to determine an RCMC-canon. All these canons were already
found by Vuza’s algorithm.

For n = 108 we have to consider the composition 108 = 6 · 18. There
are 17 717 859 Lyndon words of length 108 and weight 6 over {0, 1}. They
are collected into 514 754 orbits under the action of the affine group.
There remains only one orbit representative which can be extended to
an RCMC-canon. (This orbit contains 3 different Lyndon words.) For
each of these Lyndon words there exist (the same 252) outer rhythms
which can be used to determine an RCMC-canon. They are listed at the
end of the previous section. As already explained there, some of these
RCMC-canons of length 108 are not Vuza-constructible.

In both situations these are the only compositions of n which possibly
lead to RCMC-canons.
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