
On a linear functional equation for
formal power series

Harald Fripertinger∗, Ludwig Reich

Herrn Professor Dr. Dr.h.c.mult. Edmund Hlawka in Verehrung gewidmet.

Abstract

Let ρ be a primitive j0-th complex root of 1, C [[x]] the ring of formal power
series in x over C, and let a(x), b(x) ∈ C [[x]]. We study the two equations

ϕ(ρx) = a(x)ϕ(x) + b(x) (L)

and
ϕ(ρx) = a(x)ϕ(x) (Lh)

for ϕ ∈ C [[x]], which occurred in connection with an interesting and important
special case when dealing with the problem of a covariant embedding of (L) with
respect to an iteration group. (See H. Fripertinger and L. Reich. On covariant
embeddings of a linear functional equation with respect to an analytic iteration
group. Accepted for publication in the International Journal of Bifurcation and
Chaos.) We describe necessary and sufficient conditions for finding nontrivial
solutions of (Lh) and for finding solutions of (L) in the form of “cyclic” functional
equations for a and b. Then we describe the set of all solutions of these functional
equations and present different representations of their general solutions.

1 Introduction

About linear functional equations there exists a rather rich literature. The main sources
are [6] chapters 2, 8, 13, and [7] chapters 2, 3, and 4, where the general ideas for solving
such equations, like iterating them, can be found. However, it seems that the setting of
formal power series has not been studied so far in detail. For a foundation of the basic
calculations with formal power series we refer the reader to [5] and to [2] or [3].
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We study the linear functional equation

ϕ(ρx) = a(x)ϕ(x) + b(x) (L)

for ϕ and its homogeneous form

ϕ(ρx) = a(x)ϕ(x) (Lh)

in C [[x]], the ring of formal power series over C. We always assume that ord a(x) = 0,
whence a(x) has a reciprocal (i.e. a multiplicative inverse) in C [[x]], and ρ is a complex
primitive root of 1 of order j0. This problem occurred in connection with an interesting
and important special case when dealing with the problem of a covariant embedding
of (L) with respect to an iteration group. (See [4].) First we determine necessary and
sufficient conditions on a(x) for the existence of non-trivial solutions of (Lh) and describe
the set of all solutions in these situations. Then under the assumption that (Lh) has
non-trivial solutions we investigate under which conditions (L) can be solved. The set
of all solutions of (L) can easily be described then as the set of all series of the form
ϕ(0)(x)+ψ(x), where ϕ(0) is a particular solution of (L) and ψ(x) is an arbitrary solution
of (Lh).

In Lemma 2 we determine necessary (and, as it finally turns out, sufficient) conditions
on a(x) (cf. (1)) for the existence of non-trivial solutions of (Lh). From Lemma 3 it
follows that we can always assume that a(x) = 1 + a1x + . . .. Then in Theorem 5
the general solution of (Lh) is presented, from which we derive projection formulae and
other representations (2, `0) of the general solution in Lemma 7 and Theorem 8. Finally,
in Theorem 9 we present a situation in which it is possible to describe the general
solution of (Lh) by each of these different representations (2, `0). The previous results
are summarized for the case when a(x) = ρk0 +a1(x)+ . . . in Theorem 10. Another form
of the general solution of (Lh) is given in Theorem 12. At the end of Section 2, starting
with Lemma 13, we describe necessary and sufficient conditions on b(x) (cf. (7)) for the
existence of solutions of (L). The general solution of (L) is presented in Theorem 15.

In Section 3 we apply the formal logarithm, which finally allows to describe the
conditions (1) and (7) in more details (cf. Proposition 16 and Proposition 20). We
also get another representation of the general solution of (Lh) in Theorem 18 and poly-
nomial expressions for the coefficients of a(x) and b(x) in Proposition 16, Remark 19,
Proposition 20, and Remark 32.

It is our main aim to work out the specific features of equations (Lh) and (L) in the
setting of formal power series. Therefore, it seems important to present explicit formulas
for the coefficients of the general solution, which is done in Section 4 in Theorem 22 and
Theorem 23. These expressions for the coefficients imply also necessary and sufficient
conditions (16) or (20) for the existence of a non-zero solution of (Lh), respectively of a
solution of (L), in a form different from the compact equations (1) and (7).

The next two sections apply methods from linear algebra. In Section 5 we consider
systems of (homogeneous) linear functional equations by replacing in (Lh) or (L) the
variable x by ρx, . . . , ρj0−1x. Then we derive the conditions (1) and (7) as rank conditions
on certain matrices.
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In Section 6 we introduce a direct decomposition of C [[x]] into subspaces (C [[x]])(k)

consisting of power series of the form γ(x) =
∑

n≡k mod j0
γnx

n. This also allows to apply
methods from linear algebra, so that the conditions (1) and (7) can again be expressed
as conditions on the rank of certain matrices (cf. Proposition 26). The solutions of
(Lh) or (L) can be computed as solutions of systems of linear equations and are given
in form of determinants (cf. Theorem 28 and Theorem 30). In Theorem 29 we derive
an interesting identity by comparing these different representations of the condition on
a(x) for the existence of a non-trivial solution of (Lh). Finally, Theorem 31 describes a
generalization of Theorem 12.

Then in Section 7 we investigate under which conditions solutions of (Lh), (L), (1),
and (7) are holomorphic in a neighborhood of 0.

The results of this paper are derived for the substitution ρx into ϕ(x). Corresponding
results also hold when ρx is replaced by a formal power series of the form p(x) =
S−1(ρS(x)), where S(x) = x+ s2x

2 . . . ∈ C [[x]].

Theorem 1. Let p(x) = S−1(ρS(x)) for S(x) = x+ s2x
2 . . . ∈ C [[x]]. The formal power

series ϕ(x) is a solution of

ϕ(p(x)) = a(x)ϕ(x) + b(x) (Lp)

if and only if ϕ̃ := ϕ ◦ S−1 satisfies

ϕ̃(ρy) = ã(y)ϕ̃(y) + b̃(y), (L̃)

where ã := a ◦ S−1 and b̃ := b ◦ S−1.

Proof. The formal series ϕ(x) satisfies (Lp) if and only if

ϕ(S−1(ρS(x))) = a(x)ϕ(x) + b(x),

which is equivalent to

(ϕ ◦ S−1)(ρS(x)) = (a ◦ S−1)(S(x))(ϕ ◦ S−1)(S(x)) + (b ◦ S−1)(S(x)),

which is equal to (L̃) after replacing S(x) by y. 2

Theorem 1 allows to rewrite our results for the general form (Lp) of the linear functional
equation, where p(x) ∈ C [[x]] satisfies

pj0(x) = x, pk(x) 6= x for 0 < k < j0.

This condition is equivalent to the existence of an invertible series S(x) = x+ s2x
2 + . . .

and a primitive root ρ of order j0, such that p(x) = S−1(ρS(x)). (Cf. [11] Theorem 1,
page 248.) We will give some of the details at the very end of this paper in Section 8.

Whenever it is useful we write the series ϕ(x), a(x) and b(x) ∈ C [[x]] in the form

ϕ(x) =
∑
n≥0

ϕnx
n, a(x) =

∑
n≥0

anx
n, b(x) =

∑
n≥0

bnx
n.

Most of the notation coincides with the notation used in [4]. For that reason, for
instance, the order of ρ is denoted by j0.
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2 Iteration of the linear equation

Our first results are just derived from iterating the linear functional equation.

Lemma 2. If ϕ(x) 6= 0 is a solution of (Lh), then

ϕ(ρnx) =
n−1∏
`=0

a(ρ`x)ϕ(x), n ≥ 0

and
j0−1∏
`=0

a(ρ`x) = 1. (1)

Proof. The first statement is proved by induction over n. For n = 0 everything is
clear. Assume that n > 0, then

ϕ(ρnx) = ϕ(ρρn−1x) = a(ρn−1x)ϕ(ρn−1x) = a(ρn−1x)
n−2∏
`=0

a(ρ`x)ϕ(x) =
n−1∏
`=0

a(ρ`x)ϕ(x).

For n = j0 we get ϕ(x) = ϕ(ρj0x) =
∏j0−1

`=0 a(ρ`x)ϕ(x). Since ϕ(x) 6= 0 we get the second
result. 2

The necessary condition (1) can also be found in [6] as formula (8.5) on page 182.
For ψ(x) ∈ C [[x]] and ` ∈ N0 let ψ`(x) be given by ψ`(x) := x`ψ(x). (For this type

of transformations of the unknown function see [1] page 59.)

Lemma 3. The series ψ(x) is a solution of (Lh) if and only if ψ`(x) is a solution of

ϕ(ρx) = ρ`a(x)ϕ(x) (Lh, `)

for ` ∈ N0.

Proof. First assume that ψ(x) is a solution of (Lh). Then ψ`(ρx) = ρ`x`a(x)ψ(x) =
ρ`a(x)ψ`(x). Hence ψ`(x) is a solution of (Lh, `). Conversely, assume that ψ`(x) is a
solution of (Lh, `). Then ρ`x`ψ(ρx) = ψ`(ρx) = ρ`a(x)ψ`(x) = ρ`a(x)x`ψ(x), whence
ψ(ρx) = a(x)ψ(x). This means that ψ(x) satisfies (Lh), and the proof is finished. 2

From Lemma 2 we deduce that when there exists a nontrivial solution of (Lh), then
the coefficient a0 of a(x) is a complex j0-th root of 1. Consequently, there exists an
integer `0 ∈ {0, . . . , j0 − 1} such that ã(x) := ρ`0a(x) ≡ 1 mod x. Assume that `0 6= 0.
If ψ̃(x) is a solution of (Lh, `0), then also ψ̃j0(x) is a solution. From Lemma 3 it follows
immediately that ψ(x) := xj0−`0ψ̃(x) is a solution of (Lh), since ψ`0(x) = ψ̃j0(x) is a
solution of (Lh, `0). Hence, without loss of generality we can always assume that a0 = 1.
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Lemma 4. Assume that a0 = 1 and that ϕ(x) 6= 0 is a solution of (Lh). Let ϕ(x) =∑
n≥0 ϕnx

n, then

ϕ(x) =

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

ϕtj0x
tj0 . (2)

Proof. Computing the sum of ϕ(ρnx) for n from 0 to j0 − 1, we obtain

j0−1∑
n=0

ϕ(ρnx) =

j0−1∑
n=0

∑
m≥0

ϕmρ
nmxm =

∑
m≥0

ϕm

(
j0−1∑
n=0

ρnm

)
xm = j0

∑
t≥0

ϕtj0x
tj0 ,

since
j0−1∑
n=0

ρnm =

{
0, if m 6≡ 0 mod j0
j0, if m ≡ 0 mod j0.

From Lemma 2 we deduce that

j0−1∑
n=0

ϕ(ρnx) =

j0−1∑
n=0

n−1∏
`=0

a(ρ`x)ϕ(x).

Since a0 = 1 and therefore
∑j0−1

n=0

∏n−1
`=0 a(ρ

`x) ≡ j0 mod x, it is possible to find the

reciprocal of
∑j0−1

n=0

∏n−1
`=0 a(ρ

`x) in C [[x]], whence ϕ(x) is of the given form. 2

Theorem 5. If the series a(x) satisfies (1) and a0 = 1, then the general solution ϕ(x)
of (Lh) is given (similar to (2)) by

ϕ(x) =

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

ϕ∗tj0x
tj0 , (2′)

where
∑

t≥0 ϕ
∗
tj0
xtj0 ∈ C [[x]] is arbitrary. Furthermore, ϕtj0 = ϕ∗tj0 for t ≥ 0.

Proof. Taking into account that ρj0 = 1 we derive from (2′) that ϕ(ρx) equals

ϕ(ρx) =

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`+1x)

]−1

j0
∑
t≥0

ϕ∗tj0ρ
tj0xtj0 =

[
j0−1∑
n=0

n∏
`=1

a(ρ`x)

]−1

j0
∑
t≥0

ϕ∗tj0x
tj0 = a(x)

[
j0−1∑
n=0

n∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

ϕ∗tj0x
tj0 =

a(x)

[
j0∑

n=1

n−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

ϕ∗tj0x
tj0 .
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Applying (1) we continue with

a(x)

[
j0−1∑
n=1

n−1∏
`=0

a(ρ`x) + 1

]−1

j0
∑
t≥0

ϕ∗tj0x
tj0 = a(x)

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

ϕ∗tj0x
tj0

which equals a(x)ϕ(x). From Lemma 4 it follows now that the coefficients ϕn for n ≡
0 mod j0 are the prescribed complex numbers ϕ∗tj0 for t ≥ 0. 2

For later use we just mention the formula[
j0−1∑
n=0

n−1∏
`=0

a(ρ`+1x)

]−1

= a(x)

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1

. (3)

As an immediate consequence of Theorem 5 we find

Remark 6. If, under the hypotheses of Theorem 5, ϕ(x) 6= 0 is a solution of (Lh), then
necessarily ordϕ(x) = t0j0 for some t0 ∈ N0.

Proof. The series ϕ(x) 6= 0 is a solution of (Lh) if and only if
∑

t≥0 ϕtj0x
tj0 6= 0. If∑

t≥0 ϕtj0x
tj0 6= 0, then

∑
t≥0 ϕtj0x

tj0 =
∑

t≥t0
ϕtj0x

tj0 with ϕt0j0 6= 0, for some t0. Then
(2) yields the assertion, since

ord

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1

= 0

and

ord

(∑
t≥t0

ϕtj0x
tj0

)
= t0j0.

2

For a solution ϕ(x) =
∑

n≥0 ϕnx
n of (Lh) where a(x) satisfies (1) we get from (2) con-

versely that the partial series
∑

t≥0 ϕtj0x
tj0+`0 of ϕ(x) is given by the so called projection

formula ∑
t≥0

ϕtj0x
tj0 =

1

j0

(
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

)
ϕ(x). (4)

We may, similarly, consider the partial series
∑

t≥0 ϕtj0+`0x
tj0 of ϕ(x) for 0 ≤ `0 < j0,

and ask whether an analogous expression for these partial series holds. For 0 ≤ `0 < j0
let

A`0(x) :=

j0−1∑
n=0

ρ−n`0

n−1∏
`=0

a(ρ`x). (5)

We get
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Lemma 7. 1. Let ϕ(x) =
∑

n≥0 ϕnx
n be a solution of (Lh) and assume that a(x)

satisfies (1) with a(x) ≡ 1 mod x. Then∑
t≥0

ϕtj0+`0x
tj0+`0 =

1

j0
A`0(x)ϕ(x) (4, `0)

for 0 ≤ `0 < j0. If A`0(x) 6= 0, then

ϕ(x) = [A`0(x)]
−1j0

∑
t≥0

ϕtj0+`0x
tj0+`0 . (2, `0)

2. If a(x) is a solution of (1) with a(x) ≡ 1 mod x and A`0(x) 6= 0, then

ordA`0(x) ≡ `0 mod j0.

Proof. The proof of 1. is the same as the proof of Lemma 4. In order to prove 2.,
let ϕ(x) be the solution of (Lh) such that

∑
t≥0 ϕtj0x

tj0 = 1. This solution exists by
Theorem 5. Then by 1. either A`0(x) = 0 or its order is congruent `0 modulo j0 since
ordϕ(x) = 0. 2

We also obtain in the same way as Theorem 5

Theorem 8. Let a(x) be a solution of (1), a(x) ≡ 1 mod x, and let 0 ≤ `0 < j0. Assume
that A`0(x) 6= 0 and (by the second part of Lemma 7) ordA`0(x) = t0j0 + `0 for some
t0 ∈ N0. Then the general solution ϕ(x) =

∑
n≥0 ϕnx

n of (Lh) is given by (2, `0) with

an arbitrary series
∑

t≥t0
ϕtj0+`0x

tj0+`0. The coefficients ϕn of ϕ(x) with n ≡ `0 mod j0
and n ≥ t0j0 + `0 are the prescribed complex numbers ϕtj0+`0 for t ≥ t0.

If the coefficients a1, . . . , aj0−1 of a(x), a solution of (1), are sufficiently general, then
the solutions ϕ(x) of (Lh) can be described by (2, `0) for any `0 ∈ {0, . . . , j0 − 1}. We
will see in Proposition 16 that there exist solutions a(x) of (1) for which the coefficients
a1, . . . , aj0−1 can be chosen arbitrarily.

Theorem 9. Assume that a(x) = 1+a1x+. . . is a solution of (1), where the coefficients
a1, . . . , aj0−1 are algebraically independent over Q, then A`0(x) 6= 0 for all 0 ≤ `0 < j0.

Proof. From the definition of A`0(x) it follows that

A`0(x) =

j0−1∑
n=0

ρ−n`0
∑
r≥0

( ∑
ν0+...+νn−1=r

aν0 · · · aνn−1ρ
ν1+2ν2+...+(n−1)νn−1

)
xr,

whence the coefficient [A`0(x)]j0−1 of xj0−1 in A`0(x) is of the form

[A`0(x)]j0−1 =

j0−1∑
n=0

ρ−n`0
∑

ν0+...+νn−1=j0−1

aν0 · · · aνn−1ρ
ν1+2ν2+...+(n−1)νn−1 .
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A summand of [A`0(x)]j0−1 consists only of powers of ρ and powers of a1 if and only if
νj ∈ {0, 1} for j = 0, . . . , n − 1, since a0 = 1. But since moreover we assume that the
condition ν0+. . .+νn−1 = j0−1 is satisfied, n = j0−1 and νj = 1 for all j. Consequently,
there exists exactly one summand of [A`0(x)]j0−1 consisting only of powers of ρ and a1.
It is given by

ρ−(j0−1)`0aj0−1
1 ρ1+2+...+j0−2 = aj0−1

1 ρ(j0−2)(j0−1)/2−(j0−1)`0 ,

which we will abbreviate by aj0−1
1 ρm(`0). Then

[A`0(x)]j0−1 = aj0−1
1 ρm(`0) +R`0(ρ, a1, . . . , aj0−1),

where R`0 is a polynomial. As a polynomial in a1 it is of degree less than j0−1. From the
fact that a1, . . . , aj0−1 are algebraically independent over Q we get that [A`0(x)]j0−1 6= 0
for `0 = 0, . . . , j0 − 1. 2

We will use the partial series
∑

t≥0 ϕtj0+`0x
tj0+`0 later systematically. (Cf. Section 6.)

We now give the representation of the general solution ϕ(x) of (Lh) if a(x) satisfies
(1) and a(x) ≡ ρk0 mod x with 0 ≤ k0 < j0.

Theorem 10. In this case Ak0(x) 6= 0, and the general solution ϕ(x) of (Lh) is given
by

ϕ(x) = [Ak0(x)]
−1j0

∑
t≥0

ϕtj0+k0x
tj0+k0 ,

where
∑

t≥0 ϕtj0+k0x
tj0+k0 is arbitrary. The coefficients ϕn of ϕ(x) with n ≡ k0 mod j0

are the prescribed complex numbers ϕtj0+k0 for t ≥ 0.

Proof. Let ã(x) := ρ−k0a(x), then ã(x) ≡ 1 mod x. According to Lemma 3, the series
ϕ(x) is a solution of (Lh) if and only if ϕ(x) = xk0ϕ̃(x) where ϕ̃(x) ∈ C [[x]] is a solution
of

ϕ̃(ρx) = ã(x)ϕ̃(x). (Lh, ã)

Hence ϕ0 = . . . = ϕk0−1 = 0, i.e. ordϕ(x) ≥ k0, and ϕn+k0 = ϕ̃n for n ≥ 0. In Theorem 5
the general solution ϕ̃(x) =

∑
n≥0 ϕ̃nx

n of (Lh, ã) was given as

ϕ̃(x) =

[
j0−1∑
n=0

n−1∏
`=0

ã(ρ`x)

]−1

j0
∑
t≥0

ϕ̃tj0x
tj0 ,

where
∑

t≥0 ϕ̃tj0x
tj0 is arbitrary. Consequently,

ϕ(x) =

[
j0−1∑
n=0

n−1∏
`=0

ρ−k0a(ρ`x)

]−1

j0
∑
t≥0

ϕtj0+k0x
tj0+k0

which yields the asserted form. 2
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As in the case of a(x) ≡ 1 mod x we find for a(x) ≡ ρk0 mod x, for each solution ϕ(x)
of (Lh) and for each `0 ∈ {0, . . . , j0 − 1} that

∑
t≥0

ϕtj0+`0+k0x
tj0+`0+k0 =

1

j0

(
j0−1∑
n=0

ρ−n(`0+k0)

n−1∏
`=0

a(ρ`x)

)
ϕ(x). (4, `0, k0)

Since there exist solutions of (Lh) with ϕ(x) = xk0 + . . ., we find that either

j0−1∑
n=0

ρ−n(`0+k0)

n−1∏
`=0

a(ρ`x) = 0 (6)

or

ord

(
j0−1∑
n=0

ρ−n(`0+k0)

n−1∏
`=0

a(ρ`x)

)
= t0j0 + `0

for some t0 ≥ 0. In the latter case we get for the general solution

ϕ(x) =

[
j0−1∑
n=0

ρ−n(`0+k0)

n−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥t0

ϕtj0+`0+k0x
tj0+`0+k0 , (2, `0, k0)

where
∑

t≥t0
ϕtj0+`0+k0x

tj0+`0+k0 is arbitrary.

Remark 11. Let 0 ≤ `0 < j0 and let a(x) be a solution of (1) with a(x) ≡ ρk0 mod x.
The series a(x) satisfies (6) if and only if for all solutions ϕ(x) =

∑
n≥0 ϕnx

n of (Lh)

ϕtj0+`0+k0 = 0 t ≥ 0.

Proof. If (6) is satisfied, then from (4, `0, k0) it follows that ϕtj0+`0+k0 = 0 for all t ≥ 0.
If (6) is not satisfied, then for all ϕ(x) 6= 0 it follows from (4, `0, k0) that∑

t≥0

ϕtj0+`0+k0x
tj0+`0+k0 6= 0.

2

There is still another way to describe the general solution of (Lh).

Theorem 12. If a(x) satisfies (1), then the general solution of (Lh) is given by

Γ(x) :=

j0−1∑
k=0

γ(ρkx)∏k
j=0 a(ρ

jx)
,

for an arbitrary series γ(x) ∈ C [[x]].

We notice that the right hand side in this expression for Γ(x) will also appear in (7) (as
left hand side), which is the necessary and sufficient condition for (L) to have a solution.
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Proof. The series Γ(x) satisfies (Lh) since by an application of (1) we have

Γ(ρx) =

j0−1∑
k=0

γ(ρk+1x)∏k
j=0 a(ρ

j+1x)
=

j0−2∑
k=0

γ(ρk+1x)∏k+1
j=1 a(ρ

jx)
+

γ(x)

(
∏j0−1

j=1 a(ρjx))a(x)
=

γ(x) +

j0−1∑
k=1

γ(ρkx)∏k
j=1 a(ρ

jx)
= a(x)

(
γ(x)

a(x)
+

j0−1∑
k=1

γ(ρkx)∏k
j=0 a(ρ

jx)

)
= a(x)Γ(x).

If a0 = ρk0 , then the general solution of (Lh) is given in Theorem 10 as

ϕ(x) =

[
j0−1∑
k=0

ρ−kk0

k−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

ϕtj0+k0x
tj0+k0 .

In order to prove that the general solution can also be expressed in the form Γ(x),
we prove that for any choice of the coefficients Γtj0+k0 for t ≥ 0 we can find a series
γ(x) ∈ C [[x]] such that

j0−1∑
k=0

γ(ρkx)∏k
j=0 a(ρ

jx)
=

[
j0−1∑
k=0

ρ−kk0

k−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

Γtj0+k0x
tj0+k0 =

∑
n≥0

Γnx
n. (∗)

Since a(x) satisfies (1) we have

γ(ρkx)∏k
j=0 a(ρ

jx)
= γ(ρkx)

j0−1∏
j=k+1

a(ρjx) = γ(ρkx)

(
aj0−1−k

0 +
∑
n≥1

P (k)
n (a0, . . . , an, ρ)x

n

)
=

(∑
n≥0

γnρ
knxn

)(
aj0−1−k

0 +
∑
n≥1

P (k)
n (a0, . . . , an, ρ)x

n

)
=

aj0−1−k
0

∑
n≥0

γnρ
knxn +

∑
n≥0

(
n−1∑
r=0

γrρ
krP

(k)
n−r(a0, . . . , an−r, ρ)

)
xn,

with universal polynomials P
(k)
n (a0, . . . , an, ρ). Moreover, aj0−1−k

0 = ρk0(j0−1−k). Hence

j0−1∑
k=0

γ(ρkx)∏k
j=0 a(ρ

jx)
=

∑
n≥0

(
γn

j0−1∑
k=0

ρknρk0(j0−1−k) +
n−1∑
r=0

γr

j0−1∑
k=0

ρkrP
(k)
n−r(a0, . . . , an−r, ρ)

)
xn =

∑
n≥0

(
γnρ

−k0

j0−1∑
k=0

(ρn−k0)k +Qn(a0, . . . , an, γ0, . . . , γn−1, ρ)

)
xn,
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with suitable polynomials Qn(a0, . . . , an, γ0, . . . , γn−1, ρ). If n ≡ k0 mod j0, then

j0−1∑
k=0

(ρn−k0)k = j0.

When comparing the coefficients in (∗) we get for n ≡ k0 mod j0

j0γnρ
−k0 +Qn(a0, . . . , an, γ0, . . . , γn−1, ρ) = Γn,

which allows to determine γn in a unique way. 2

Another proof of this theorem will be presented in Section 5, and an even stronger result
will be proved in Theorem 31.

In the last part of this section we deal with the linear equation (L).

Lemma 13. If ϕ(x) is a solution of (L), then

ϕ(ρnx) =
n−1∏
`=0

a(ρ`x)

(
ϕ(x) +

n−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
, n ≥ 0.

If moreover (1) is satisfied, then also

j0−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
= 0 (7)

holds.

Proof. For n = 0 the formula is true. Let n ≥ 0 and assume that the formula holds
for n. Then ϕ(ρn+1x) equals

ϕ(ρn+1x) = a(ρnx)ϕ(ρnx) + b(ρnx) =

a(ρnx)
n−1∏
`=0

a(ρ`x)

(
ϕ(x) +

n−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
+ b(ρnx) =

n∏
`=0

a(ρ`x)

(
ϕ(x) +

n−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
+

b(ρnx)∏n
j=0 a(ρ

jx)

)
=

n∏
`=0

a(ρ`x)

(
ϕ(x) +

n∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
which finishes the first part of the proof. For n = j0 we get that

ϕ(x) = ϕ(ρj0x) =

j0−1∏
`=0

a(ρ`x)

(
ϕ(x) +

j0−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
.

If (1) is satisfied, then we get as an immediate consequence that (7) is also satisfied.
2
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From (7) it is clear that

b(x)

a(x)
= −

j0−1∑
k=1

b(ρkx)∏k
j=0 a(ρ

jx)
,

whence

b(x) = −a(x)
j0−1∑
k=1

b(ρkx)∏k
j=0 a(ρ

jx)
.

Lemma 14. Assume that a0 = 1 and ϕ(x) is a solution of (L). Then

ϕ(x) = [A0(x)]
−1

(
j0
∑
t≥0

ϕtj0x
tj0 −

j0−1∑
n=1

n−1∏
`=0

a(ρ`x)
n−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
, (8)

where A0(x) is defined by (5).

Proof. Computing the sum of ϕ(ρnx) for n from 0 to j0 − 1 we obtain as in the proof
of Lemma 4 that

j0−1∑
n=0

ϕ(ρnx) = j0
∑
t≥0

ϕtj0x
tj0 .

From Lemma 13 we deduce that

j0−1∑
n=0

ϕ(ρnx) =

j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

(
ϕ(x) +

n−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
=

A0(x)ϕ(x) +

j0−1∑
n=1

n−1∏
`=0

a(ρ`x)
n−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
.

Since a0 = 1 it is possible to find the reciprocal of A0(x), whence ϕ(x) is of the given
form. 2

Theorem 15. If the series a(x) and b(x) satisfy (1), (7), and a0 = 1, then the general
solution ϕ(x) of (L) is given (similar to (8)) by

ϕ(x) = [A0(x)]
−1

(
j0
∑
t≥0

ϕ∗tj0x
tj0 −

j0−1∑
n=1

n−1∏
`=0

a(ρ`x)
n−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
(8′)

where
∑

t≥0 ϕ
∗
tj0
xtj0 ∈ C [[x]] is arbitrary. Furthermore, ϕtj0 = ϕ∗tj0 for t ≥ 0.

Proof. Similarly as in the proof of Theorem 5 we compute ϕ(ρx) as

[A0(ρx)]
−1

(
j0
∑
t≥0

ϕ∗tj0ρ
tj0xtj0 −

j0−1∑
n=1

n−1∏
`=0

a(ρ`+1x)
n−1∑
k=0

b(ρk+1x)∏k
j=0 a(ρ

j+1x)

)
=
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a(x)[A0(x)]
−1

(
j0
∑
t≥0

ϕ∗tj0x
tj0 −

j0−1∑
n=1

n∏
`=1

a(ρ`x)
n∑

k=1

b(ρkx)∏k
j=1 a(ρ

jx)

)
(∗)

Now we want to evaluate the last term of this expression. Multiplying each summand
by a(x)/a(x) and replacing n by m− 1 yields

j0−1∑
n=1

n∏
`=1

a(ρ`x)
n∑

k=1

b(ρkx)∏k
j=1 a(ρ

jx)
=

j0∑
m=2

m−1∏
`=0

a(ρ`x)
m−1∑
k=1

b(ρkx)∏k
j=0 a(ρ

jx)
=

j0∑
m=2

m−1∏
`=0

a(ρ`x)

(
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
− b(x)

a(x)

)
=

j0−1∑
m=2

m−1∏
`=0

a(ρ`x)

(
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
− b(x)

a(x)

)
+

j0−1∏
`=0

a(ρ`x)

(
j0−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
− b(x)

a(x)

)
.

Using (1) and (7) we derive

j0−1∑
m=2

m−1∏
`=0

a(ρ`x)

(
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
− b(x)

a(x)

)
− b(x)

a(x)
=

j0−1∑
m=1

m−1∏
`=0

a(ρ`x)

(
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
− b(x)

a(x)

)
− a(x)

(
b(x)

a(x)
− b(x)

a(x)

)
− b(x)

a(x)
=

j0−1∑
m=1

m−1∏
`=0

a(ρ`x)

(
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
− b(x)

a(x)

)
− b(x)

a(x)
=

j0−1∑
m=1

m−1∏
`=0

a(ρ`x)
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
−

j0−1∑
m=1

m−1∏
`=0

a(ρ`x)
b(x)

a(x)
− b(x)

a(x)
=

j0−1∑
m=1

m−1∏
`=0

a(ρ`x)
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)
−

j0−1∑
m=0

m−1∏
`=0

a(ρ`x)
b(x)

a(x)
.

Inserting this into (∗) and using (5) we get

ϕ(ρx) = a(x)[A0(x)]
−1

(
j0
∑
t≥0

ϕ∗tj0x
tj0 −

j0−1∑
m=1

m−1∏
`=0

a(ρ`x)
m−1∑
k=0

b(ρkx)∏k
j=0 a(ρ

jx)

)
+

+a(x)

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1(j0−1∑
m=0

m−1∏
`=0

a(ρ`x)
b(x)

a(x)

)
which equals a(x)ϕ(x) + b(x). From Lemma 14 it follows now that the coefficients ϕn

for n ≡ 0 mod j0 are the prescribed complex numbers ϕ∗tj0 for t ≥ 0. 2
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3 Cyclic functional equations

So far we gave necessary and sufficient conditions for (Lh) and (L) to be solvable, and we
described the sets of solutions of these equations. By introducing the formal logarithm

ln(1 + x) =
∑
n≥1

(−1)n−1xn

n

we can describe which coefficients of a(x) and b(x) can be chosen arbitrarily, and how
the other coefficients depend on the previous ones.

Proposition 16. The series a(x) satisfies (1) if and only if

a(x) = ξ exp

( ∑
n6≡0 mod j0

γnx
n

)
, γn ∈ C, (9)

where ξj0 = 1. This is equivalent to

a(x) = ξ

1 +
∑

n6≡0 mod j0

anx
n +

∑
n≥1

n≡0 mod j0

Pn(a)xn

 ,

where an are arbitrary elements in C for n 6≡ 0 mod j0 and

Pn(a) = Pn(am | m < n, m 6≡ 0 mod j0)

are suitable universal polynomials in the coefficients am.

We notice that (1) is nothing else but the multiplicatively written cyclic equation for
a(x) in C [[x]].

Proof. First assume that a0 = 1. Let γ(x) := ln(a(x)) =
∑

n≥1 γnx
n, then each γn is a

polynomial in the coefficients a1, . . . , an. The series a(x) satisfies (1) if and only if γ(x)
satisfies

γ(x) + γ(ρx) + . . .+ γ(ρj0−1x) = 0.

Hence,

0 =

j0−1∑
r=0

γ(ρrx) =

j0−1∑
r=0

∑
n≥1

γnρ
rnxn =

∑
n≥1

γnx
n

j0−1∑
r=0

ρrn = j0
∑
n≥1

n≡0 mod j0

γnx
n,

which is equivalent to γn = 0 for n ≡ 0 mod j0. Consequently (9) is proved for a0 = 1
with ξ = 1.

In order to prove the second part assume again that ξ = 1. If

a(x) = exp(
∑

n6≡0 mod j0

γnx
n),
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then

a(x) = 1 +
∑
n≥1

1

n!
(γ1x+ γ2x

2 + . . .+ γj0−1x
j0−1 + γj0+1x

j0+1 + . . .)n =

1 +
∑

n6≡0 mod j0

(γn +Qn(γm | m < n))xn +
∑
n≥1

n≡0 mod j0

Qn(γm | m < n)xn,

where Qn is a polynomial in γm for m < n and m 6≡ 0 mod j0. For n 6≡ 0 mod j0 let
an := γn +Qn(γm | m < n). Then γn = an −Qn(γm | m < n, m 6≡ 0 mod j0), whence

γn = an −Rn(am | m < n, m 6≡ 0 mod j0) (10)

for a suitable polynomial Rn. Finally, for n ≡ 0 mod j0 let an be the polynomial

Qn(γm | m < n, m 6≡ 0 mod j0) =

Qn

(
am −Rm(ak | k < m, k 6≡ 0 mod j0)

∣∣∣ m < n, m 6≡ 0 mod j0

)
which can also be expressed as a polynomial in am, whence

an = Pn(am | m < n, m 6≡ 0 mod j0). (11)

So we end up with

a(x) = 1 +
∑

n6≡0 mod j0

anx
n +

∑
n≥1

n≡0 mod j0

Pn(am | m < n, m 6≡ 0 mod j0)x
n.

Conversely, take any sequence (an)n6≡0 mod j0
and define γn for n 6≡ 0 mod j0 by (10). For

n ≡ 0 mod j0 let an be given by (11). Then

a(x) := 1 +
∑
n≥1

anx
n = exp(

∑
n6≡0 mod j0

γnx
n),

consequently it is of the form (9). If a0 6= 1, then a0 = ξ, a complex root of 1, and
a(x) = ξã(x), where ã(x) ≡ 1 mod x satisfies (1). Hence ã(x) is of the asserted form
and the proof is finished. 2

Remark 17. A different proof of Proposition 16 could be obtained by differentiating (1)
(for a(x) ≡ 1 mod x) formally with respect to x and dividing by a(x) · · · a(ρj0−1x) = 1,
which gives

j0−1∑
`=0

ρ`
da
dx

(ρ`x)

a(ρ`x)
= 0 or

j0−1∑
`=0

ρ`ã(ρ`x) = 0 for ã(x) =
da(x)

dx

a(x)
.

Solving this functional equation for ã(x) and going back to a(x) by solving the formal
differential equation

da(x)

dx
= ã(x)a(x),

we find Proposition 16.

15



From Proposition 16 we derive still another representation of the general solution of
(Lh).

Theorem 18. If (9) is satisfied with ξ = 1, then the solutions of (Lh) are of the form

ϕ(x) = exp

 ∑
n≥1

n6≡0 mod j0

γn

ρn − 1
xn

∑
t≥0

htj0x
tj0 ,

where γ(x) = ln(a(x)) =
∑

n≥1 γnx
n and (htj0)t≥0 is an arbitrary sequence in C.

Proof. The series ϕ(x) = 1 +
∑

n≥1 ϕnx
n is a solution of (Lh) if and only if ψ(x) =

ln(ϕ(x)) is a solution of
ψ(ρx) = γ(x) + ψ(x),

where γ(x) = ln(a(x)). Introducing coefficients ψn of ψ and γn of γ yields∑
n≥1

ψnρ
nxn =

∑
n≥1

γnx
n +

∑
n≥1

ψnx
n,

or equivalently
ψn(ρn − 1) = γn, ∀n ≥ 1.

If n 6≡ 0 mod j0, then ψn is uniquely determined as ψn = γn/(ρ
n − 1). The coefficients

ψtj0 can be chosen arbitrarily in C. Hence

ϕ(x) = exp

( ∑
n6≡0 mod j0

γn

ρn − 1
xn +

∑
t≥1

ψtj0x
tj0

)
=

exp

( ∑
n6≡0 mod j0

γn

ρn − 1
xn

)(
1 +

∑
t≥1

htj0x
tj0

)
.

Since (ψtj0)t≥1 is an arbitrary sequence in C, also htj0 for t ≥ 1 can be chosen arbitrarily
in C. Finally, the general solution ϕ(x) with ϕ0 not necessarily equal to 1 is given by

ϕ(x) = exp

( ∑
n6≡0 mod j0

γn

ρn − 1
xn

)∑
t≥0

htj0x
tj0 .

2

Remark 19. If a(x) satisfies (9) with ξ = 1 and b(x) satisfies (7), then b0 = 0 and btj0
can be expressed as

btj0 = Stj0(ρ, (an)n≥1, bm | m < tj0, m 6≡ 0 mod j0), t ≥ 1

where Stj0 is a polynomial.
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Proof. Since a0 = 1, the reciprocal of
∏k

j=0 a(ρ
jx) starts with the constant term 1 for

k ≥ 0, thus from (7) it follows immediately that b0 = 0.

Indicating the reciprocal of
∏k

j=0 a(ρ
jx) by 1 +

∑
n≥1 a

(k)
n xn, then from (7) we get

0 =

j0−1∑
k=0

b(ρkx)

(
1 +

∑
n≥1

a(k)
n xn

)
=

j0−1∑
k=0

(∑
n≥1

bnρ
knxn

)(
1 +

∑
n≥1

a(k)
n xn

)
=

∑
n≥1

bnx
n

(
1 +

∑
n≥1

a(0)
n xn

)
+

j0−1∑
k=1

 ∑
n≥1

n6≡0 mod j0

bnρ
knxn +

∑
t≥1

btj0x
tj0

(1 +
∑
n≥1

a(k)
n xn

)
.

Hence, the coefficient of xtj0 for t ≥ 1 satisfies

j0btj0 +Rtj0(ρ, (an)n≥1, bm | m < tj0) = 0,

where Rtj0 is a suitable polynomial. Consequently

btj0 = − 1

j0
Rtj0(ρ, (an)n≥1, bm | m < tj0).

By induction we prove that btj0 = Stj0(ρ, (an)n≥1, bm | m < tj0, m 6≡ 0 mod j0), with a
suitable polynomial Stj0 . 2

Now we will characterize the solutions b(x) of (7) if a(x) satisfies (1) and a0 = 1, i.e.
those b(x) for which (L) has a solution.

Proposition 20. If a(x) satisfies (9) with ξ = 1, then (L) has a solution if and only if
b(x) is of the form

b(x) =
∑
n≥1

n6≡0 mod j0

ψnx
n +

∑
n≥1

n≡0 mod j0

Mn((ar)r≥1, ψm | m < n, m 6≡ 0 mod j0)x
n, (12)

for arbitrary ψn ∈ C (n 6≡ 0 mod j0) and for suitable polynomials Mn (n ≡ 0 mod j0).

Proof. First assume that (L) has a solution ϕ(x). We may assume ϕ0 = 1 and ϕtj0 = 0
for t ≥ 1, since it is possible to add a suitable solution of (Lh) (c.f. Theorem 18) in order
to determine a solution with these properties. Hence

ϕ(x) = 1 +
∑

n6≡0 mod j0

ϕnx
n.

As a consequence of (L) we derive

b(x) =

(
1 +

∑
n6≡0 mod j0

ϕnρ
nxn

)
−

(
1 +

∑
n6≡0 mod j0

ϕnx
n

)(
1 +

∑
n≥1

anx
n

)
=
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∑
n6≡0 mod j0

[(ρn − 1)ϕn + Ln((ar)r≥1, ϕm | m < n, m 6≡ 0 mod j0)]x
n+

+
∑
n≥1

n≡0 mod j0

Ln((ar)r≥1, ϕm | m < n, m 6≡ 0 mod j0)x
n,

where Ln are suitable polynomials.
For n 6≡ 0 mod j0 denote (ρn − 1)ϕn + Ln((ar)r≥1, ϕm | m < n, m 6≡ 0 mod j0) by

ψn. Hence for n 6≡ 0 mod j0

ϕn =
ψn − Ln((ar)r≥1, ϕm | m < n, m 6≡ 0 mod j0)

ρn − 1
=

Kn(ρ, (ar)r≥1, ψn, ϕm | m < n, m 6≡ 0 mod j0),

where Kn is a suitable polynomial. By induction we get

ϕn = K̃n(ρ, (ar)r≥1, ψm | m ≤ n, m 6≡ 0 mod j0) (13)

with suitable polynomials K̃n. For n ≡ 0 mod j0 replace ϕm in Ln by (13). Then b(x)
is of the form (12).

Conversely, assume that (ψn)n6≡0 mod j0
is a sequence in C, and let b(x) be given by

(12). Then there exists a unique sequence (ϕn)n≥1 such that ϕn = 0 for n ≡ 0 mod j0
and ϕn given by (13) for n 6≡ 0 mod j0. According to the computation above, b(x)
satisfies b(x) = ϕ(ρx)−a(x)ϕ(x) for ϕ(x) = 1+

∑
n6≡0 mod j0

ϕnx
n. Hence, ϕ is a solution

of (L). 2

Assume that a(x) satisfies (9) with ξ = 1. From the last lemma we deduce that (L) can
be solved if b(x) is of the form

b(x) =
∑
n≥1

n6≡0 mod j0

bnx
n +

∑
n≥1

n≡0 mod j0

Mn((ar)r≥1, bm | m < n, m 6≡ 0 mod j0)

with arbitrary (bn)n6≡0 mod j0 in C. Determining ϕn for n 6≡ 0 mod j0 by (13) (where we
have to replace ψm by bm) and setting ϕ0 = 1 and ϕsj0 = 0 for s ≥ 1, we compute
a particular solution ϕ(x) =

∑
n≥0 ϕnx

n of (L). All the other solutions of (L) can be
found by adding series as given in Theorem 18.

Another characterization of those b(x) ∈ C [[x]] for which (L) has a solution is given
in Remark 32.

4 Explicit formulas for the coefficients of the solu-

tions

Our next approach allows to compute (more or less) explicitly the coefficients of the
solutions ϕ of (Lh) or (L) respectively. The series ϕ is a solution of (Lh) if and only if∑

n≥0

ϕnρ
nxn =

∑
n≥0

(
n∑

r=0

arϕn−r

)
xn.
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This is equivalent to

ϕn(ρn − a0) =
n∑

r=1

arϕn−r, ∀n ≥ 0. (14)

If aj0
0 = 1, then a0 is of the form ρn for suitable n ∈ Z. Let k0 be the minimum of

{n ∈ N0 | ρn = a0}, and let K denote the set

K := {k0 + nj0 | n ∈ N0} .

The proof of the next lemma, which uses (14) and induction, is left to the reader.

Lemma 21. If ϕ is a solution of (Lh), then ϕn = 0 for 0 ≤ n < k0. If ϕ 6= 0 is a
solution of (Lh), then min {k ∈ N0 | ϕk 6= 0} = k0 + rj0 for some r ∈ N0.

As a consequence of Lemma 3 we derive that ϕ is a solution of (Lh) if and only if xrj0ϕ
is a solution of (Lh) for r ∈ N0. If ϕ 6= 0 is a solution of (Lh), then there exists an index
k ∈ N0 such that ϕk 6= 0. From the last lemma we deduce that min {k ∈ N0 | ϕk 6= 0} =
k0 + rj0 for a suitable r ∈ N0. Without loss of generality we assume that r = 0.

In combinatorics an ordered partition of the integer n ≥ 0 is an ordered tuple
(r1, . . . , r`) of integers ri > 0 such that

∑`
i=1 ri = n. For n = 0 there exists only

one ordered partition, the empty tuple (). In the context of the present article we are
rather interested in the finite sequences σ = (σ1, . . . , σ`), σi =

∑i
j=1 rj, corresponding

to an ordered partition (r1, . . . , r`). Let Σn indicate the set of all those sequences σ
corresponding to ordered partition of n such that σi 6≡ 0 mod j0 for all i = 1, . . . , `.
Then Σ0 = {()}, and for n > 0 we have

Σn = {(σ1, . . . , σ`) | σi ∈ N, σi 6≡ 0 mod j0, 1 ≤ i ≤ `, σj < σj+1, 1 ≤ j < `, σ` = n} .

The length of σ = (σ1, . . . , σ`) ∈ Σn is `, which will also be indicated as `(σ). Moreover,
by a(σ) we denote the product

a(σ) =
∏̀
i=1

aσi−σi−1
,

where an are the coefficients of the series a(x), and where we assume that σ0 = 0. Finally
N(σ) stands for

N(σ) =
∏̀
i=1

(ρσi − 1).

Theorem 22. 1. If ϕ is a non-trivial solution of (Lh), then the coefficients of ϕ
satisfy

ϕn =

[
n−k0

j0

]∑
t=0

ϕk0+tj0

∑
σ∈Σn−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

, (15)
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and for all s ≥ 0
sj0∑
r=1

ar

∑
σ∈Σsj0−r

a(σ)

a
`(σ)
0 N(σ)

= 0 (16)

holds.

2. If (16) is satisfied for all s ≥ 0, then each series ϕ with coefficients given by (15)
and any choice of the coefficients (ϕk0+tj0)t≥0 is a solution of (Lh).

Proof. 1. Let ϕ(x) =
∑

n≥0 ϕnx
n be a non-trivial solution of (Lh). In Lemma 21 it

was shown that ϕn = 0 for 0 ≤ n < k0. This coincides with (15), since in this case the
first sum is empty. If n is of the form k0 +sj0 for s ∈ N0, then the right hand side of (15)
is just ϕk0+sj0 , since Σn−k0−tj0 = ∅ for 0 ≤ t < s, and Σn−k0−sj0 = Σ0 = {()}. Finally,
for n > k0 and n 6∈ K we will use induction to prove the theorem. Setting n = k0 + 1 in
(14) we get ϕk0+1(ρ

k0+1 − a0) = a1ϕk0 , hence

ϕk0+1 =
a1ϕk0

a0(ρ− 1)
= ϕk0

∑
σ∈Σ1

a(σ)

a
`(σ)
0 N(σ)

.

Let n > k0 + 1, n 6∈ K, and assume that ϕj is given by (15) for j < n. From (14) we
deduce

ϕn =
1

a0(ρn−k0 − 1)

n−k0∑
r=1

arϕn−r =

1

a0(ρn−k0 − 1)

n−k0∑
r=1

ar

[
n−r−k0

j0

]∑
t=0

ϕk0+tj0

∑
σ∈Σn−r−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

=

[
n−1−k0

j0

]∑
t=0

ϕk0+tj0

n−k0−tj0∑
r=1

ar

a0(ρn−k0 − 1)

∑
σ∈Σn−r−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

=

[
n−k0

j0

]∑
t=0

ϕk0+tj0

∑
σ∈Σn−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

.

For doing these computations we used that if n 6∈ K, then the two values
[

n−1−k0

j0

]
and[

n−k0

j0

]
coincide. Moreover

Σn−k0−tj0 =
n−k0−tj0.
∪

r=1

{
(σ1, . . . , σ`(σ), n− k0 − tj0) | σ ∈ Σn−k0−tj0−r

}
.

If σ̃ denotes a sequence σ̃ = (σ1, . . . , σ`(σ), n−k0−tj0) ∈ Σn−k0−tj0 , where σ ∈ Σn−k0−tj0−r

for some r ∈ {1, . . . , n− k0 − tj0}, then `(σ̃) = `(σ) + 1, a(σ̃) = a(σ)ar and N(σ̃) =
N(σ)(ρn−k0−tj0 − 1) = N(σ)(ρn−k0 − 1).
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So far we proved that ϕn is of the form (15). We still have to show that (16) holds
for all s ≥ 0. For s = 0 this is clear. Assume that s > 0, then by induction we get

ϕk0+sj0(ρ
k0+sj0 − a0) = 0 =

k0+sj0∑
r=1

arϕk0+sj0−r =

k0+sj0∑
r=1

ar

[
k0+sj0−r−k0

j0

]∑
t=0

ϕk0+tj0

∑
σ∈Σk0+sj0−r−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

=

s−1∑
t=0

ϕk0+tj0

(s−t)j0∑
r=1

ar

∑
σ∈Σ(s−t)j0−r

a(σ)

a
`(σ)
0 N(σ)

=

ϕk0

sj0∑
r=1

ar

∑
σ∈Σsj0−r

a(σ)

a
`(σ)
0 N(σ)

+
s−1∑
t=1

ϕk0+tj0

(s−t)j0∑
r=1

ar

∑
σ∈Σ(s−t)j0−r

a(σ)

a
`(σ)
0 N(σ)︸ ︷︷ ︸

=0

=

ϕk0

sj0∑
r=1

ar

∑
σ∈Σsj0−r

a(σ)

a
`(σ)
0 N(σ)

.

From ϕk0 6= 0 it follows that (16) holds also for s.
2. Assume that (ϕk0+tj0)t≥0 is an arbitrary sequence in C, and let ϕn be given by

(15) for all n ≥ 0. In order to prove that ϕ satisfies (Lh) if (16) is satisfied for all s, we
prove that (14) holds. If n 6∈ K, then ϕn is computed by (15) which was in the first part
of this proof deduced from

ϕn =
1

ρn − a0

n∑
r=1

arϕn−r.

Hence (14) is satisfied. If n ∈ K, then n = k0 +sj0 for a suitable s ≥ 0. In this situation
(14) reduces to

0 =

k0+sj0∑
r=1

arϕk0+sj0−r.

In the first part of this proof this sum was computed as

s−1∑
t=0

ϕk0+tj0

(s−t)j0∑
r=1

ar

∑
σ∈Σ(s−t)j0−r

a(σ)

a
`(σ)
0 N(σ)

which equals 0, since (16) is satisfied. 2
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In order to deal with the equation (L) we introduce some further notation: For
integers m and j let

Σ̄m,j := {σ ∈ Σm | σi+j 6∈ K, 1 ≤ i ≤ `(σ)} ,

and finally for σ ∈ Σm let

N̄(j, σ) :=

`(σ)∏
i=1

(ρσi+j − a0) = a
`(σ)
0

`(σ)∏
i=1

(ρσi+j−k0 − 1).

The series ϕ is a solution of (L) if and only if

∑
n≥0

ϕnρ
nxn =

∑
n≥0

(
n∑

r=0

arϕn−r + bn

)
xn.

This is equivalent to

ϕn(ρn − a0) =
n∑

r=1

arϕn−r + bn, ∀n ≥ 0. (17)

Theorem 23. 1. If ϕ is a solution of (L), then the coefficients of ϕ satisfy

ϕn =

[
n−k0

j0

]∑
t=0

ϕk0+tj0

∑
σ∈Σn−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

+
n∑

j=0
j 6∈K

bj
ρj − a0

∑
σ∈Σ̄n−j,j

a(σ)

N̄(j, σ)
, (18)

and for all n ∈ K (assume n = k0 + sj0)

s−1∑
t=0

ϕk0+tj0

(s−t)j0∑
r=1

ar

∑
σ∈Σ(s−t)j0−r

a(σ)

a
`(σ)
0 N(σ)

+
n−1∑
j=0
j 6∈K

bj
ρj − a0

n−j∑
r=1

ar

∑
σ∈Σ̄n−j−r,j

a(σ)

N̄(j, σ)
+bn = 0

(19)
holds.

2. If there exist non-trivial solutions of (Lh) and if

n−1∑
j=0
j 6∈K

bj
ρj − a0

n−j∑
r=1

ar

∑
σ∈Σ̄n−j−r,j

a(σ)

N̄(j, σ)
+ bn = 0 (20)

holds for all n ∈ K, then each choice of (ϕk0+tj0)t≥0 in C yields via (18) a solution
of (L).
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Proof. 1. Let ϕ be a solution of (L). For n = k0 + sj0 ∈ K the coefficient ϕn is of the
form (18) since the first sum reduces to ϕk0+sj0 as shown in the proof of Theorem 22,
and the second sum yields 0. The last fact is true since for n ∈ K by definition the set
Σ̄n−j,j = ∅ for all j ∈ {0, . . . , n}. Now we will apply induction to prove (18) for all n. If
k0 = 0, then (18) holds for n = 0. If k0 6= 0, then a0 6= 1, and from (17) we deduce that
ϕ0(1− a0) = b0 which yields

ϕ0 =
b0

ρ0 − a0

in accordance with (18). Now assume that n 6∈ K and that ϕj is given by (18) for j < n.
From (17) we deduce

ϕn(ρn − a0) =
n∑

r=1

arϕn−r + bn =

n∑
r=1

ar


[

n−r−k0
j0

]∑
t=0

ϕk0+tj0

∑
σ∈Σn−r−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

+
n−r∑
j=0
j 6∈K

bj
ρj − a0

∑
σ∈Σ̄n−r−j,j

a(σ)

N̄(j, σ)

+ bn =

n∑
r=1

ar

[
n−r−k0

j0

]∑
t=0

ϕk0+tj0

∑
σ∈Σn−r−k0−tj0

a(σ)

a
`(σ)
0 N(σ)

+
n∑

r=1

ar

n−r∑
j=0
j 6∈K

bj
ρj − a0

∑
σ∈Σ̄n−r−j,j

a(σ)

N̄(j, σ)
+ bn.

In order to determine ϕn, we have to divide this formula by ρn − a0. With the first
expression of the last line we dealt already in the proof of Theorem 22, so we only have
to compute

1

ρn − a0

 n∑
r=1

ar

n−r∑
j=0
j 6∈K

bj
ρj − a0

∑
σ∈Σ̄n−r−j,j

a(σ)

N̄(j, σ)
+ bn

 .

Changing the order of summation yields

n−1∑
j=0
j 6∈K

bj
ρj − a0

n−j∑
r=1

ar

ρn − a0

∑
σ∈Σ̄n−r−j,j

a(σ)

N̄(j, σ)
+

bn
ρn − a0

=

n∑
j=0
j 6∈K

bj
ρj − a0

∑
σ∈Σ̄n−j,j

a(σ)

N̄(j, σ)
.

Similar as in the proof of Theorem 22 we used the fact that for j < n

Σ̄n−j,j =
n−j

.
∪

r=1

{
(σ1, . . . , σ`(σ), n− j) | σ ∈ Σ̄n−r−j,j

}
.

Let σ̃ = (σ1, . . . , σ`(σ), n−j) ∈ Σ̄n−j,j such that σ ∈ Σ̄n−r−j,j for some r ∈ {1, . . . , n− j},
then N̄(j, σ̃) = N̄(j, σ)(ρn−a0). Combining this result with the result from Theorem 22
proves (18).
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Let n = k0 + sj0 for s ∈ N0 be an element of K, then from (17) we deduce that

ϕn(ρn − a0) = 0 =
n∑

r=1

arϕn−r + bn.

Expressing ϕn−r by (18) and changing the sequence of summation yields (19).
2. If there exist non-trivial solutions of (Lh), then (16) is satisfied, hence (19) reduces

for n ∈ K to (20). If this equation is satisfied for all n ∈ K, then a particular solution
of (L) is given by ψ(x) with coefficients ψk0+tj0 = 0 for t ≥ 0 and

ψn =
n∑

j=0
j 6∈K

bj
ρj − a0

∑
σ∈Σ̄n−j,j

a(σ)

N̄(j, σ)

for n 6∈ K. It remains to show that ψn satisfies (17). If n 6∈ K, we computed in 1. that

n∑
r=1

arψn−r + bn = (ρn − a0)ψn.

If n ∈ K, then (20) implies that

n∑
r=1

arψn−r + bn = 0 = (ρn − a0)ψn.

Hence ψ is a particular solution of (L). All solutions of (L) are of the form ψ(x)+ϕ(x),
where ϕ(x) is a solution of (Lh), described in Theorem 22. 2

5 Representation of the solutions by means of basic

linear algebra

In the next two approaches some methods of linear algebra will be useful. We describe
the necessary and sufficient conditions for the existence of non-trivial solutions of (Lh)
and of solutions of (L) as conditions on the rank of certain matrices. Moreover, we
present another proof for the form of the general solution of (Lh) given in Theorem 12.

Replacing in the homogeneous linear functional equation (Lh) the variable x by
ρx, ρ2x, . . . , ρj0−1x and writing ϕn(x) for ϕ(ρnx) for n = 0, . . . , j0− 1, we get the system
of homogeneous linear equations

−a(x)ϕ0(x) + ϕ1(x) = 0

−a(ρx)ϕ1(x) + ϕ2(x) = 0

. . .

−a(ρj0−2x)ϕj0−2(x) + ϕj0−1(x) = 0

−a(ρj0−1x)ϕj0−1(x) + ϕ0(x) = 0
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which can be written in matrix form as

A(x)

 ϕ0(x)
...

ϕj0−1(x)

 =

 0
...
0


with

A(x) :=


−a(x) 1 0 . . . 0

0 −a(ρx) 1 0
...

. . . . . .
...

0 . . . . . . −a(ρj0−2x) 1
1 0 . . . 0 −a(ρj0−1x)

 .

If (Lh) has non-trivial solutions, then this system has non-trivial solutions, whence
the determinant of the coefficient matrix, which we will call A(x), vanishes. Hence
detA(x) = 0. Developing this determinant with respect to the first column, we imme-
diately get that (1) is satisfied, and that A(x) is of rank j0 − 1. Assuming that (1) is
satisfied, we can apply a method described in [6] pages 267–271, originating from [9] and
[10], which expresses the general solution of this system in the form

ϕ0(x)
ϕ1(x)

...
ϕj0−2(x)
ϕj0−1(x)

 = B(x)


γ(x)
γ(ρx)

...
γ(ρj0−2x)
γ(ρj0−1x)


with a suitable matrix B(x) and an arbitrary series γ(x) ∈ C [[x]]. In general the ex-
pressions obtained for ϕ(ρkx) in this way are contradictory. However, when introducing
matrices Mk = (mk

ij)0≤i,j<j0 given by

mk
ij =

{
1, if i+ k ≡ j mod j0
0, otherwise,

and if B(x) satisfies B(x) = MkB(x)M−1
k for all k = 0, . . . , j0 − 1, then they are not. In

this situation B(x) is called a compatible matrix.
In order to determine B(x), the main task is to find a matrix B1(x) which is com-

patible and which satisfies

A(x)B1(x)A(x) + A(x) = 0. (21)

Then we put B(x) := B1(x)A(x) + I, where I is the unit matrix. First we determine
matrices P (x), Q(x), and D(x) such that D(x) is a diagonal matrix of the same rank as
A(x) and such that A(x) = P (x)D(x)Q(x). In the present situation we have

P (x) =


1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 . . . 1 0
−1
a(x)

−1
a(x)a(ρx)

. . . −1∏j0−2
j=0 a(ρjx)

1

 , D(x) =


1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 . . . 1 0
0 0 . . . 0 0
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and

Q(x) =


−a(x) 1 0 . . . 0

0 −a(ρx) 1 0
...

. . . . . .
...

0 0 . . . −a(ρj0−2x) 1
0 0 . . . 0 1

 .

Then we define a matrix B0(x) := −Q−1(x)D(x)P−1(x) which satisfies (21). The inverse
matrices are given by

P−1(x) =


1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 . . . 1 0
1

a(x)
1

a(x)a(ρx)
. . . 1∏j0−2

j=0 a(ρjx)
1


and

Q−1(x) =



−1
a(x)

−1
a(x)a(ρx)

. . . −1∏j0−2
j=0 a(ρjx)

1∏j0−2
j=0 a(ρjx)

0 −1
a(ρx)

. . . −1∏j0−2
j=1 a(ρjx)

1∏j0−2
j=1 a(ρjx)

...
. . .

...
...

0 0 . . . −1
a(ρj0−2x)

1
a(ρj0−2x)

0 0 . . . 0 1

 .

Hence B0(x) is of the form

B0(x) =



1
a(x)

1
a(x)a(ρx)

. . . 1∏j0−2
j=0 a(ρjx)

0

0 1
a(ρx)

. . . 1∏j0−2
j=1 a(ρjx)

0

...
. . .

...
...

0 0 . . . 1
a(ρj0−2x)

0
0 0 . . . 0 0

 .

Finally, let

B1(x) :=
1

j0

j0−1∑
k=0

M−1
k B0(ρ

kx)Mk,

then B1(x) is compatible and satisfies also (21). Consequently,

B(x) := B1(x)A(x) + I =
1

j0


1 1

a(x)
. . . 1∏j0−2

j=0 a(ρjx)

a(x) a(x)
a(x)

. . . a(x)∏j0−2
j=0 a(ρjx)

...
...

. . .
...∏j0−2

j=0 a(ρjx)
∏j0−2

j=0 a(ρjx)

a(x)
. . .

∏j0−2
j=0 a(ρjx)∏j0−2
j=0 a(ρjx)
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is also compatible and can be used to determine

ϕ(x) = ϕ0(x) =
1

j0

j0−1∑
k=0

γ(ρkx)∏k−1
j=0 a(ρ

jx)
, (22)

a solution of (Lh).
Summarizing, we proved

Theorem 24. A necessary and sufficient condition for the existence of non-trivial so-
lutions of (Lh) is given by (1), and the general solution of (Lh) can be determined by
(22), where γ(x) is an arbitrary series in C [[x]].

This way we also gave a second proof for Theorem 12. We only have to replace γ(x)
by γ(x)/a(x) and multiply ϕ(x) by j0 in order to get Γ(x) from Theorem 12. An even
stronger result will be proved in Theorem 31.

Turning our attention to (L), we assume that (1) is satisfied. If we replace in (L)
the variable x by ρx, ρ2x, . . . , ρj0−1x, we obtain a system of j0 inhomogeneous linear
equations

A(x)

 ϕ0(x)
...

ϕj0−1(x)

 =

 b(x)
...

b(ρj0−1x)

 =: b(x)

with A(x) introduced at the beginning of Section 5. A necessary and sufficient condition
for the existence of solutions (ϕ0(x), . . . , ϕj0−1(x)) is that the rank of A(x) and the
rank of the enlarged matrix (A(x),b(x)) coincide. The matrix P−1(x)A(x) is an upper
triangular matrix, where the last row consists of zeroes only. Since

P−1(x)b(x) =


b(x)
b(ρx)

...
b(ρj0−2x)∑j0−1

k=0
b(ρkx)∏k

j=0 a(ρjx)

 ,

we derive again that (7) is a necessary and sufficient condition for the existence of
solutions of (L).

6 Representation of the solutions by means of de-

terminants

The methods applied in this part lead to a representation of the general solutions of (Lh)
and (L) in terms of some determinants. Also the necessary and sufficient conditions for
the existence of non-zero solutions of (Lh) or the existence of a solution of (L) can
be formulated by means of determinants. We will compare these conditions with the
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form we found before. (Cf. Section 2 and Section 5.) Moreover, in Theorem 31 we
present a generalization of Theorem 12 and Theorem 24. Finally, in Remark 32 another
characterization of those b(x) ∈ C [[x]] is given, for which (L) has a solution.

For 0 ≤ k < j0 put

(C [[x]])(k) :=

{
γ(x) ∈ C [[x]] | γ(x) =

∑
n≡k mod j0

γnx
n

}
,

then clearly (C [[x]])(k) is a subspace of the C-vector space C [[x]], and

C [[x]] =

j0−1⊕
k=0

(C [[x]])(k)

is a direct decomposition of C [[x]]. Hence each series γ(x) ∈ C [[x]] can uniquely be
decomposed into

γ(x) =

j0−1∑
k=0

γ(k)(x), γ(k)(x) ∈ (C [[x]])(k).

The series γ(x) belongs to (C [[x]])(k) if and only if γ(ρx) = ρkγ(x). Furthermore, if
γ(x) ∈ (C [[x]])(k), then γ(ρ`x) = ρ`kγ(x).

Obviously the following lemma holds.

Lemma 25. 1. If f(x) ∈ (C [[x]])(i) and g(x) ∈ (C [[x]])(j), then (fg)(x) ∈ (C [[x]])(k)

for k ≡ i+ j mod j0 and k ∈ {0, . . . , j0 − 1}.
2. If f(x) ∈ (C [[x]])(i), g(x) ∈ (C [[x]])(j) and (fg)(x) is a series of order 0, then

i = j = 0.

Using this notation (Lh) is equivalent to

j0−1∑
k=0

ρkϕ(k)(x) =

(
j0−1∑
k=0

a(k)(x)

)(
j0−1∑
k=0

ϕ(k)(x)

)
,

since ϕ(k)(ρx) = ρkϕ(k)(x). This yields the system of linear equations

a(0)(x)ϕ(0)(x) + a(j0−1)(x)ϕ(1)(x) + . . .+ a(1)(x)ϕ(j0−1)(x) = ϕ(0)(x)
a(1)(x)ϕ(0)(x) + a(0)(x)ϕ(1)(x) + . . .+ a(2)(x)ϕ(j0−1)(x) = ρϕ(1)(x)

. . .
a(j0−1)(x)ϕ(0)(x) + a(j0−2)(x)ϕ(1)(x) + . . .+ a(0)(x)ϕ(j0−1)(x) = ρj0−1ϕ(j0−1)(x)

for the unknown functions ϕ(k)(x) ∈ (C [[x]])(k). It can be written as a homogeneous
system of linear equations

A(x)

 ϕ(0)(x)
...

ϕ(j0−1)(x)

 = 0 (23)
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with coefficient matrix

A(x) =


a(0)(x)− 1 a(j0−1)(x) . . . a(1)(x)
a(1)(x) a(0)(x)− ρ . . . a(2)(x)

...
...

. . .
...

a(j0−1)(x) a(j0−2)(x) . . . a(0)(x)− ρj0−1

 . (24)

It is convenient to write A(x) also in the form A(x) = (αij)0≤i,j<j0 , where

αij = a(k)(x)− ρiδij, k ≡ i− j mod j0

and δij is the Kronecker δ-function. Then a necessary condition for the existence of
non-trivial solutions of (Lh) is detA(x) = 0.

Proposition 26. If (Lh) has non-trivial solutions, then the rank of the matrix A(x) is
equal to j0 − 1.

Proof. Since detA(x) = 0, the rank of A(x) is smaller than j0. Moreover, we
know that the coefficient a0 satisfies aj0

0 = 1, thus there exists exactly one integer
k0 ∈ {0, . . . , j0 − 1} such that a0 = ρk0 . Deleting the (k0 + 1)-th row and (k0 + 1)-th
column of A(x) we get the matrix A′(x), given by

a(0)(x)− 1 a(j0−1)(x) . . . a(j0−k0+1)(x) a(j0−k0−1)(x) . . . a(1)(x)
a(1)(x) a(0)(x)− ρ . . . a(j0−k0+2)(x) a(j0−k0)(x) . . . a(2)(x)

...
...

. . .
...

... . . .
...

a(k0−1)(x) a(k0−2)(x) . . . a(0)(x)− ρk0−1 a(j0−2)(x) . . . a(k0)(x)
a(k0+1)(x) a(k0)(x) . . . a(2)(x) a(0)(x)− ρk0+1 . . . a(k0+2)(x)

...
... . . .

...
...

. . .
...

a(j0−1)(x) a(j0−2)(x) . . . a(j0−k0)(x) a(j0−k0−2)(x) . . . a(0)(x)− ρj0−1


.

Then

detA′(x) =
∑

π∈Sj0
π(k0)=k0

sgnπ

j0−1∏
i=0

i6=k0

αiπ(i)

where Sj0 is the group of all permutations of {0, 1, . . . , j0 − 1}, which is isomorphic to
the symmetric group of degree j0. According to Lemma 25 each summand of detA′(x)
belongs to (C [[x]])(k) for

k ≡
j0−1∑
j=0

j 6=k0

(j − π(j)) ≡ 0 mod j0,

and the only summand which could be of order 0 is the summand for π = id. This
summand indeed yields the non-zero constant term

(a0 − 1) · . . . · (a0 − ρk0−1) · (a0 − ρk0+1) · . . . · (a0 − ρj0−1).

Hence, detA′(x) 6= 0 and A′(x) is of rank j0− 1. Since A′(x) is a submatrix of A(x), the
rank of A(x) is at least j0 − 1, actually it is j0 − 1. 2
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Solving (23) is equivalent to solving the inhomogeneous system of linear equations

A′(x)



ϕ(0)(x)
...

ϕ(k0−1)(x)
ϕ(k0+1)(x)

...
ϕ(j0−1)(x)


=



−a(j0−k0)(x)ϕ(k0)(x)
...

−a(j0−1)(x)ϕ(k0)(x)
−a(1)(x)ϕ(k0)(x)

...
−a(j0−k0−1)(x)ϕ(k0)(x)


. (25)

For each choice of ϕ(k0)(x) in C [[x]] there exists exactly one solution (ζ0, . . . , ζk0−1, ζk0+1,
. . . ,ζj0−1) of (25). In general these ζj are Laurent series.

Lemma 27. If ϕ(k0)(x) ∈ (C [[x]])(k0), then each ζk is a formal power series belonging to
(C [[x]])(k) for k ∈ {0, . . . , k0 − 1, k0 + 1, . . . , j0 − 1}.

Proof. Applying Cramer’s rule ζk can be computed as

ζk =
detA′[k](x)

detA′(x)
, (26)

where A′[k](x) is constructed from A′(x) by replacing one column of A′(x) by the right

hand side of (25) in an obvious way. We already know from the proof of Proposition 26
that ord detA′(x) = 0, whence 1/ detA′(x) is a formal power series, and detA′(x) ∈
(C [[x]])(0), thus also 1/ detA′(x) ∈ (C [[x]])(0). This implies that all ζk ∈ C [[x]]. The

components α
[k]
ij of A′[k](x) for i, j ∈ {0, . . . , k0 − 1, k0 + 1, . . . , j0 − 1} are

α
[k]
ij =


αij, if j 6= k
−a(i−k0)(x)ϕ(k0)(x), if j = k and i > k0

−a(i+j0−k0)(x)ϕ(k0)(x), if j = k and i < k0,

hence

detA′[k](x) =
∑

π∈Sj0
π(k0)=k0

sgnπ

j0−1∏
i=0

i6=k0

α
[k]
iπ(i).

In each summand there is exactly one term, actually the term α
[k]

π−1(k)k, which does not

belong to A′(x). Since this term belongs to (C [[x]])(π−1(k)), it follows from Lemma 25

that
∏j0−1

i=0
i6=k0

α
[k]
iπ(i) belongs to (C [[x]])(`) for

` ≡
j0−1∑
i=0

i6=k0, i6=π−1(k)

(i− π(i)) + π−1(k) =

j0−1∑
i=0

i6=k0

(i− π(i))− (π−1(k)− k) + π−1(k) ≡ k mod j0.

Consequently detA′[k](x) ∈ (C [[x]])(k) and finally ζk ∈ (C [[x]])(k) which implies that ζk is

of the form ϕ(k)(x) for ϕ(x) ∈ C [[x]]. 2
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Summarizing, we obtain a representation of the general solution of (Lh) by means of
determinants.

Theorem 28. The homogeneous linear functional equation (Lh) has a non-trivial so-
lution if and only if detA(x) = 0, where A(x) is given in (24). In this case, the rank
of A(x) equals j0 − 1, and a0 = ρk0 for some k0 ∈ {0, . . . , j0 − 1}. The matrix A′(x)
constructed from A(x) by deleting the k0-th row and column is of full rank. For arbi-
trary ϕ(k0)(x) ∈ (C [[x]])(k0) the unique solution of (25) given by (26) yields a solution
ϕ(x) =

∑j0−1
`=0 ϕ(`)(x) of (Lh).

Proof. If (Lh) has a non-trivial solution everything was shown in Proposition 26
and Lemma 27. If detA(x) = 0, then there exists a k0 ∈ {0, . . . , j0 − 1} such that
a0 = ρk0 . Assume in contrary that a0 6= ρk for k ∈ Z, then similarly as in the proof of
Proposition 26 we get that

detA(x) =
∑

π∈Sj0

sgnπ

j0−1∏
i=0

αiπ(i)

belongs to (C [[x]])(0) and the only summand which could be of order 0 is the summand
for π = id. This summand however yields the non-zero constant term

j0−1∏
k=0

(a0 − ρk)

in contradiction to detA(x) = 0. Hence, also in this situation Proposition 26 and
Lemma 27 can be applied and the proof is finished. 2

We now want to compare the necessary and sufficient condition (1) for the existence of
a non-trivial solution of (Lh) with the necessary and sufficient condition detA(x) = 0
of Theorem 28. Using the decomposition a(x) =

∑j0−1
k=0 a

(k)(x) with a(k)(x) ∈ (C [[x]])(k),
we get from (1) the identity

0 =

j0−1∏
`=0

a(ρ`x)− 1 =

j0−1∏
`=0

j0−1∑
k=0

ρ`ka(k)(x) =

[a(0)(x)]j0 +

j0−1∑
r=0

Pr(a
(1)(x), . . . , a(j0−1)(x))[a(0)(x)]r − 1,

where each Pr is a polynomial over Q(ρ). We know from Proposition 16 that for given
a(k)(x) ∈ (C [[x]])(k) for k = 1, . . . , j0 − 1 the equation

[a(0)(x)]j0 +

j0−1∑
r=0

Pr(a
(1)(x), . . . , a(j0−1)(x))[a(0)(x)]r − 1 = 0 (27)
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has a unique solution a(0)(x) ∈ (C [[x]])(0) with a(0)(x) ≡ 1 mod x.
For each solution ã(x) of (1) with ã(x) ≡ 1 mod x and each ρm for 0 ≤ m < j0, also

ρmã(x) is a solution of (1) with ρmã(x) ≡ ρm mod x, with the decomposition

ρmã(x) =

j0−1∑
k=0

ρmã(k)(x).

For given a(1)(x), . . . , a(j0−1)(x) we define for k = 1, . . . , j0 − 1

ã(k),m(x) := ρ−ma(k)(x).

Then, by our remark above, the equation

Xj0 +

j0−1∑
r=0

Pr(ã
(1),m(x), . . . , ã(j0−1),m(x))Xr − 1 = 0

has a unique solution ã(0),m(x) ∈ (C [[x]])(0) with ã(0),m(x) ≡ 1 mod x. Hence

αm(x) := ρm

(
j0−1∑
k=0

ã(k),m(x)

)
= ρmã(0),m(x) +

j0−1∑
k=1

a(k)(x)

is a solution of (1) with αm(x) ≡ ρm mod x, and ρmã(0),m(x) satisfies (27). Also, αm(x) 6=
αn(x) for n 6= m, 0 ≤ n,m < j0. So we constructed j0 different solutions of (27) in
(C [[x]])(0).

Let us develop the expression detA(x) according to powers of a(0)(x) with coefficients
which are polynomials over Q(ρ) in a(1)(x), . . . , a(j0−1)(x). This way we get a monic
polynomial of degree j0. It has the j0 different zeros αm for 0 ≤ m < j0, because for
a(x) = αm(x) the equation (Lh) has non-trivial solutions. Hence we get

Theorem 29. Let a(x) ∈ C [[x]] denote a series of order 0 and a(x) =
∑j0−1

k=0 a
(k)(x)

with a(k)(x) ∈ (C [[x]])(k). If A(x) is given by (24), then

detA(x) =

j0−1∏
`=0

a(ρ`x)− 1 =

j0−1∏
`=0

j0−1∑
k=0

ρ`ka(k)(x)− 1,

which is an identity in C [[x]].

Now we come back to the inhomogeneous linear functional equation (L), and we
assume that (Lh) has non-trivial solutions, i.e. detA(x) = 0, where A(x) is given by
(24). If we also decompose b(x) in the form

∑j0−1
k=0 b

(k)(x) with b(k)(x) ∈ (C [[x]])(k), then
(L) has a solution if and only if the inhomogeneous system of linear equations

A(x)

 ϕ(0)(x)
...

ϕ(j0−1)(x)

 =

 b(0)(x)
...

b(j0−1)(x)

 =: b(x) (28)
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has a solution with ϕ(k)(x) ∈ (C [[x]])(k) for k = 0, . . . , j0 − 1. This system has a solution
without any extra condition on ϕ(k)(x) if and only if the rank of A(x) coincides with
the rank of the enlarged matrix (A(x),b(x)). If A(k)(x) denotes the matrix derived from
A(x) by deleting the (k + 1)-th column, then (28) has a solution without any extra
condition on ϕ(k)(x) if and only if det(A(k)(x),b(x)) = 0 for k = 0, . . . , j0 − 1.

Theorem 30. Assume that detA(x) = 0 and that a(x) ≡ ρk0 mod x for some k0 ∈
{0, . . . , j0 − 1}. Then (L) has a solution if and only if det(A(k0)(x),b(x)) = 0.

Proof. If (L) has a solution, then the assertion is obvious. Now we assume that
det(A(k0)(x),b(x)) = 0, which implies that b(x) is linearly dependent on the column
vectors of A(k0)(x). From the proof of Proposition 26 we already know that A(k0) is a
matrix of rank j0− 1 and that all the column vectors of A(x) are linear combinations of
the column vectors of A(k0)(x). Hence the rank of (A(x),b(x)) equals the rank of A(x),
which is j0− 1. Consequently (28) has a solution. Also from the proof of Proposition 26
we know that the (k0 +1)-th row of A(x), thus also of (A(x),b(x)), is linearly dependent
on the other rows, so that it can be omitted. Finally (28) can be rewritten in the form

A′(x)



ϕ(0)(x)
...

ϕ(k0−1)(x)
ϕ(k0+1)(x)

...
ϕ(j0−1)(x)


=



b(0)(x)
...

b(k0−1)(x)
b(k0+1)(x)

...
b(j0−1)(x)


+



−a(j0−k0)(x)ϕ(k0)(x)
...

−a(j0−1)(x)ϕ(k0)(x)
−a(1)(x)ϕ(k0)(x)

...
−a(j0−k0−1)(x)ϕ(k0)(x)


, (29)

where ϕ(k0)(x) can be chosen arbitrarily in (C [[x]])(k0) and A′(x) is defined in the proof of
Proposition 26. Again we apply Cramer’s rule in order to solve this system of equations.
Similar to the proof of Lemma 27 we derive that the components ϕ(k)(x) of the unique
solution of (29) belong to (C [[x]])(k) for k ∈ {0, . . . , k0 − 1, k0 + 1, . . . , j0 − 1}, since the
components b(k)(x)−a(k−k0)(x)ϕ(k0)(x) of the right hand side of (29) belong to (C [[x]])(k).

2

From the representation of the general solution of (Lh) under the assumption (1)
given in Theorem 12 or Theorem 24, it is easy to obtain still another form, which is very
close to (2) or (2′), but not identical. Let us restrict to the case that a(x) = 1+a1x+ . . .,
and consider the decomposition

γ(x) =

j0−1∑
`=0

γ(`)(x)

with γ(`)(x) ∈ (C [[x]])(`). Then we easily find that

Γ(x) =

j0−1∑
k=0

γ(ρkx)∏k
j=0 a(ρ

jx)
=

j0−1∑
k=0

j0−1∑
`=0

γ(`)(ρkx)∏k
j=0 a(ρ

jx)
=

j0−1∑
`=0

(
j0−1∑
k=0

ρk`∏k
j=0 a(ρ

jx)

)
γ(`)(x) =
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(
j0−1∑
k=0

1∏k
j=0 a(ρ

jx)

)
γ(0)(x) +

j0−1∑
`=1

(
j0−1∑
k=0

ρk`∏k
j=0 a(ρ

jx)

)
γ(`)(x).

It follows from Theorem 12 that for each γ(0)(x) ∈ (C [[x]])(0)(
j0−1∑
k=0

1∏k
j=0 a(ρ

jx)

)
γ(0)(x) (30)

is a solution of (Lh). We claim

Theorem 31. If (1) holds, then the general solution of (Lh) is given by (30) with
γ(0)(x) ∈ (C [[x]])(0).

Proof. By Theorem 5 we know that to each γ(0)(x) ∈ (C [[x]])(0) there exists a series∑
t≥0 ϕ

∗
tj0
xtj0 such that(

j0−1∑
k=0

1∏k
j=0 a(ρ

jx)

)
γ(0)(x) =

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1

j0
∑
t≥0

ϕ∗tj0x
tj0 . (31)

Hence, it is easily seen that(
j0−1∑
k=0

1∏k
j=0 a(ρ

jx)

)(
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

)
∈ (C [[x]])(0), (32)

and that its reciprocal also belongs to (C [[x]])(0). If now
∑

t≥0 ϕ
∗
tj0
xtj0 is given, which

determines by (2′) the general solution of (Lh), we determine γ(0)(x) from (31), and
consequently (30) can be any solution of (Lh). 2

Similar representations like (30) hold in each case a(x) = ρk + a1x + . . ., and again
(cf. Theorem 9), if the coefficients a1, . . . , aj0−1 of a(x) are algebraically independent
over Q, then we get simultaneously j0 representations for the general solution of (Lh) in
the form (

j0−1∑
k=0

ρk`∏k
j=0 a(ρ

jx)

)
γ(`)(x)

for ` = 0, . . . , j0 − 1.
If we denote (

j0−1∑
k=0

1∏k
j=0 a(ρ

jx)

)(
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

)
by Φ(x), then it follows from (32) that Φ(ρx) = Φ(x). This together with (3) implies
that

j0−1∑
k=0

1∏k
j=0 a(ρ

jρx)
= a(x)

j0−1∑
k=0

1∏k
j=0 a(ρ

jx)
.
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Moreover, it is easy to prove that

Φ(x) = j0 +

j0−1∑
k=0

j0−1∑
`=1

∏̀
j=1

a(ρk+jx).

In Proposition 20 we already characterized those b(x) ∈ C [[x]] for which (L) has a
solution. Using the decomposition of C [[x]] into subspaces (C [[x]])(k), the following gives
another method for solving the functional equation (7), i.e. of characterizing those series
b(x), for which (L) has a solution.

Remark 32. Assume that a(x) is a solution of (1) with a(x) ≡ 1 mod x. Now we
decompose C [[x]] in the form

C [[x]] = (C [[x]])(0) ⊕

(
j0−1⊕
k=1

(C [[x]])(k)

)
.

By Φ = Φa we denote the C-linear mapping

γ(x) 7→ Φ(γ)(x) := γ(ρx)− a(x)γ(x)

from C [[x]] to C [[x]], associated with (Lh). Clearly ϕ(x) ∈ Ker Φ if and only if ϕ(x) is a
solution of (Lh). From Theorem 5 we know that

Ker Φ = j0

[
j0−1∑
n=0

n−1∏
`=0

a(ρ`x)

]−1

︸ ︷︷ ︸
=j0[A0(x)]−1=:A(x)

(C [[x]])(0).

Since, under our hypotheses, the C-linear mapping τ : C [[x]] → C [[x]]

γ(x) 7→ τ(γ)(x) := A(x)γ(x)

is a vector space automorphism of C [[x]], we get the decomposition

C [[x]] = A(x)(C [[x]])(0) ⊕A(x)

(
j0−1⊕
k=1

(C [[x]])(k)

)
= Ker Φ⊕A(x)

(
j0−1⊕
k=1

(C [[x]])(k)

)
. (33)

From this we see immediately that b(x) ∈ Im(Φ) if and only if (L) (written with a(x)
and b(x)) has a solution in C [[x]]. Hence, in order to characterize the solutions b(x) of
(7), we describe Im(Φ). According to (33), each γ(x) ∈ C [[x]] has a unique decompo-

sition γ(x) = γ0(x) + γ1(x) with γ0(x) ∈ Ker(Φ) and γ1(x) ∈ A(x)
(⊕j0−1

k=1 (C [[x]])(k)
)
.

Hence Φ(γ)(x) = Φ(γ1)(x). With γ1(x) = A(x)ψ(x) for ψ(x) =
∑

n6≡0 mod j0
ψnx

n ∈⊕j0−1
k=1 (C [[x]])(k) we calculate by using (3) (which means that A(ρx) = a(x)A(x))

Φ(γ)(x) = Φ(γ1)(x) = γ1(ρx)− a(x)γ1(x) = A(ρx)ψ(ρx)− a(x)A(x)ψ(x) =
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a(x)A(x) (ψ(ρx)− ψ(x)) = a(x)A(x)
∑

n6≡0 mod j0

(ρn − 1)ψnx
n.

By similar calculations and considerations as before and by using the facts that the
product a(x)A(x) ≡ 1 mod x and ρn − 1 6= 0 for n 6≡ 0 mod j0 we see that

b(x) = Φ(γ)(x) =
∑
n≥1

n6≡0 mod j0

ψnx
n +

∑
n≥1

n≡0 mod j0

Mn((ar)r≥1, ψm | m < n, m 6≡ 0 mod j0)x
n,

i.e. (12) holds.

7 Analytic solutions

We are now looking for the solutions of (L), (Lh), (1), and (7) which are holomorphic
in a neighborhood of x = 0. In this part we always assume that a(x) ≡ 1 mod x.

Remark 33. Assume that a(x) and b(x) are holomorphic in a neighborhood of x = 0.
If a(x) ≡ 1 mod x, then from (2′) or (8′) we derive that a solution ϕ(x) of (Lh) or
(L), respectively, is convergent in a neighborhood of x = 0 if and only if the projection∑

t≥0 ϕtj0x
tj0 to (C [[x]])(0) is holomorphic.

Corresponding results can be obtained for projections into (C [[x]])(`0) from (2, `0) and
for a(x) ≡ ρk0 mod x from (2, `0, k0).

More interesting are the solutions of the other two equations: Let us start with the
“cyclic” equation (1) which describes the case when (Lh) has a non-zero solution.

Proposition 34. 1. A solution a(x) of (1) is holomorphic at x = 0 if and only if in
the representation (9) of a(x) the series

∑
n6≡0 mod j0

γnx
n is convergent for |x| < r,

with some r > 0.

2. A solution a(x) of (1) is holomorphic at x = 0 if and only if in the decomposition
a(x) =

∑j0−1
k=0 a

(k)(x) with a(k)(x) ∈ (C [[x]])(k) the series a(1)(x), . . . , a(j0−1)(x) are
convergent.

Proof. 1. is immediately clear.
2. If a(x) is convergent for |x| < r, then it is absolutely convergent for |x| < r,

and so are the partial series a(k)(x). Assume conversely that for |x| < r the series
a(1)(x), . . . , a(j0−1)(x) are convergent, i.e. holomorphic functions at x = 0. Then all
possible a(0),m(x), 0 ≤ m < j0, for which a(x) = a(0),m(x) +

∑j0−1
k=1 a

(k)(x) are (formal)
solutions of (1), have the form

a(0),m(x) = ρm

(
1 +

∑
n≡0 mod j0

R(m)
n (ak | k < n, k 6≡ 0 mod j0)x

n

)
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for 0 ≤ m < j0, with polynomials R
(m)
n . They are exactly the solutions of

Xj0 +

j0−1∑
r=0

Pr(a
(1)(x), . . . , a(j0−1)(x))Xr − 1 = 0 (34)

derived from (27). From the latter it follows by the theorem of Puiseux (cf. [12] pages
50 – 55, or [8] pages 98 – 104) that the series a(0),m(x) are all convergent, since the co-
efficients Pr(a

(1)(x), . . . , a(j0−1)(x)) are convergent power series. Another way of proving
this, is to observe that

Xj0 +

j0−1∑
r=0

Pr(0, . . . , 0)Xr − 1 = 0

(derived from (34) by setting a(1)(x) = . . . = a(j0−1)(x) = 0) has exactly j0 different
solutions 1, ρ, . . ., ρj0−1. Therefore, by the implicit function theorem, there exist exactly
j0 different at x = 0 holomorphic solutions w[m](x) of (34) such that w[m](0) = ρm for
0 ≤ m < j0. These solutions have Taylor expansions

w[m](x) = ρm +
∑
n≥1

w[m]
n xn,

which, considered as formal series, are also j0 distinct solutions of (34) and hence of
(1) in the field of formal Laurent series. Hence they must coincide with the solutions
constructed before, i.e.

a(0),m(x) = w[m](x) ∈ C [[x]].

Consequently, each a(0),m(x) is convergent, and so each a(x) of the form

a(0),m(x) +

j0−1∑
k=1

a(k)(x)

for 0 ≤ m < j0 is convergent. 2

Now we turn to (7) characterizing the existence of solutions of (L). We assume here
that a(x) ≡ 1 mod x is a solution of (1) holomorphic at x = 0.

Theorem 35. Under the previous assumptions the solution b(x) of (7) is convergent if
and only if b(1)(x), . . . , b(j0−1)(x) are convergent power series.

Proof. Replacing b(x) in (7) by its decomposition
∑j0−1

k=0 b
(k)(x) we get

0 =

j0−1∑
`=0

b(ρ`x)∏`
j=0 a(ρ

jx)
=

j0−1∑
`=0

∑j0−1
k=0 ρ

`kb(k)(x)∏`
j=0 a(ρ

jx)
=

j0−1∑
k=0

(
j0−1∑
`=0

ρ`k∏`
j=0 a(ρ

jx)

)
b(k)(x) =
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(
j0−1∑
`=0

1∏`
j=0 a(ρ

jx)

)
b(0)(x) +

j0−1∑
k=1

(
j0−1∑
`=0

ρ`k∏`
j=0 a(ρ

jx)

)
b(k)(x).

Since the coefficient a0 = 1, the reciprocal of a(ρjx) exists for j = 0, . . . , j0 − 1 in C [[x]].
These series 1/a(ρjx) are convergent in a neighborhood of x = 0, hence also

α(x) :=

j0−1∑
`=0

1∏`
j=0 a(ρ

jx)

is a convergent series. Moreover, the reciprocal of α(x) belongs to C [[x]], since α(x) ≡
j0 mod x, and it is also a convergent power series. 2

Remark 36. Another proof of Theorem 35 can be derived from Theorem 30. Here we
assume more generally that a(x) is holomorphic at x = 0 and a(x) ≡ ρk0 mod x for some
k0 ∈ {0, . . . , j0 − 1}, and we prove that a solution b(x) of (7) is convergent if and only
if b(k)(x) is convergent for all k 6= k0. Expanding det(A(k0)(x),b(x)) = 0 with respect to
the last column, we derive that

±

detA′(x)b(k0)(x) +

j0−1∑
k=0

k 6=k0

Pk(a
(0)(x), . . . , a(j0−1)(x), ρ)b(k)(x)

 = 0,

where Pk are polynomials in a(0)(x), . . ., a(j0−1)(x) and ρ. Hence

b(k0)(x) = −[detA′(x)]−1

j0−1∑
k=0

k 6=k0

Pk(a
(0)(x), . . . , a(j0−1)(x), ρ)b(k)(x)

is convergent, since the reciprocal of detA′(x) is a convergent power series.

8 The general linear functional equation (Lp)

Let S(x) = x + s2x
2 + . . . be a formal power series as in Theorem 1 such that p(x) =

S−1(ρS(x)). The proof of the next lemma is straight forward, hence it is omitted.

Lemma 37. For all k ∈ N the equality

S−1(ρkS(x)) = pk(x)

holds.

All formal power series γ(x) belonging to (C [[x]])(k) for some k ∈ Z satisfy γ(ρx) =
ρkγ(x). In the general situation of substituting p(x) instead of ρx we derive
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Lemma 38. Let γ(x) ∈ C [[x]]. If k denotes an integer such that 0 ≤ k < j0, then
γ(p(x)) = ρkγ(x) if and only if

γ(x) =
∑
t≥0

γ̃k+tj0 [S(x)]k+tj0 , (35)

where γ̃n are the coefficients of the series γ̃ := γ ◦ S−1.

Proof. From γ(p(x)) = ρkγ(x) it follows that γ(S−1(ρS(x)) = ρkγ(x). When putting
y = S(x) and γ̃ = γ ◦ S−1 we get γ̃(ρy) = ρkγ̃(y), which is equivalent to γ̃(y) =∑

t≥0 γ̃k+tj0y
k+tj0 . Hence, (γ ◦ S−1)(S(x)) =

∑
t≥0 γ̃k+tj0 [S(x)]k+tj0 which is the same as

(35). 2

The necessary and sufficient condition for the existence of non-trivial solutions of the
homogeneous linear functional equation and its general solution are described in

Theorem 39. The homogeneous linear functional equation

ϕ(p(x)) = a(x)ϕ(x) (Lph)

has non-trivial solutions if and only if

j0−1∏
`=0

a(p`(x)) = 1. (36)

If a0 = ρk0 and if (36) is satisfied, then the general solution ϕ(x) of (Lph) is given by

ϕ(x) =

[
j0−1∑
n=0

ρ−nk0

n−1∏
`=0

a(p`(x))

]−1

γ(x), (37)

where γ(x) is an arbitrary solution of γ(p(x)) = ρk0γ(x), hence of the form (35).

Proof. From Theorem 1 it follows that (Lph) has non-trivial solutions if and only if

ϕ̃(ρy) = ã(y)ϕ̃(y)

has non-trivial solutions, where ϕ̃ = ϕ ◦ S−1 and y = S(x). According to (1) the
necessary and sufficient condition for the existence of non-trivial solutions ϕ̃(y) is given
by

j0−1∏
`=0

ã(ρ`y) = 1

which is the same as
j0−1∏
`=0

(a ◦ S−1)(ρ`S(x)) = 1,
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whence
j0−1∏
`=0

a(S−1(ρ`S(x)) = 1.

Since S−1(ρkS(x)) = pk(x), we derive

j0−1∏
`=0

a(p`(x)) = 1.

The general solution of the transformed homogeneous linear functional equation where
ã0 = ρk0 (which is equivalent to a0 = ρk0) is given by Theorem 10 as

ϕ̃(y) =

[
j0−1∑
n=0

ρ−nk0

n−1∏
`=0

ã(ρ`y)

]−1

j0
∑
t≥0

ϕ̃tj0+k0y
tj0+k0 .

Replacing y by S(x), ϕ̃ by ϕ ◦ S−1 and ã by a ◦ S−1 we get (37). 2

Applying similar methods as in the last proof, it is possible to show that the next
theorem holds.

Theorem 40. Assume that (Lph) has non-trivial solutions. The inhomogeneous linear
functional equation (Lp) has solutions if and only if

j0−1∑
k=0

b(pk(x))∏k
j=0 a(p

j(x))
= 0. (38)

If a0 = ρk0 and if (36) and (38) are satisfied, then the general solution ϕ(x) of (Lp) is
given by

ϕ(x) =

[
j0−1∑
n=0

ρ−nk0

n−1∏
`=0

a(p`(x))

]−1(
γ(x)−

j0−1∑
n=1

ρ−nk0

n−1∏
`=0

a(p`(x))
n−1∑
k=0

b(pk(x))∏k
j=0 a(p

j(x))

)
(39)

where γ(x) is an arbitrary solution of γ(p(x)) = ρk0γ(x), hence of the form (35).
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