Enumeration of mosaics

Harald Fripertinger !

Institut fir Mathematik, Karl-Franzens-Universitit Graz, Heinrichstr. 36/4,
A-8010 Graz. e-mail: harald.fripertinger@kfunigraz.ac.at

Abstract

Mosaics are orbits of partitions arising from music theoretical investigations. Various
theorems from the field of “enumeration under finite group actions” are applied for
enumerating mosaics. In other words, it is demonstrated how to enumerate G-orbits
of partitions of given size, block-type or stabilizer-type.

Key words: Combinatorics under group actions, applications in music theory,
enumeration of partition patterns.

1 Preliminaries

Applying methods from Pdlya Theory it is possible to enumerate various kinds
of musical objects as intervals, chords, scales, tone-rows, motives and so on.
See for instance [7], [18], [4,5], [16,17]. Usually these results are given for an n-
scale, which means that there are exactly n tones within one octave. Collecting
all tones, which are any number of octaves apart, into a pitch class, there are
exactly n pitch classes in an n-scale. These pitch classes can be considered
as elements of the residue class group (Z,,4+) of Z modulo nZ. The musical
operator of transposing by one pitch class can be interpreted as a permutation
of Z,

T:Z, — Zn, i—T(i) =i+ 1.

Inversion at pitch class 0 is the following permutation

I:Z, — Z,, i— I1(i) = —i.
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The group of all possibilities to transpose is the cyclic group (T') = C,, of order
n. The permutation group generated by T and [ is the dihedral group D, of
order 2n (for n > 3). Sometimes in twelve tone music a further operator, the
so called quart circle symmetry, is used, which is given by

QZ le — Z12, 1+ Q(Z) = bi.

Generalising this concept to n tone music the affine group

Aft(1,7,) :=={(a,b) |a € Z;, be Z,}

(the set of all unit elements in the ring Z, is indicated by Z) acts on Z, by
(a,b)(i) := ai +b.

These permutation groups induce group actions on the sets of musical objects.
(For basic definitions and notions in enumeration under finite group actions
see [12].) Let me explain these group actions by introducing the so called
mosaics in Z, (see chapters 2 and 3 of [1]). In [11] it is stated that the enu-
meration of mosaics is an open research problem communicated by R. Morris.
A partition w of Z,, is a collection of subsets of Z,,, such that the empty set is
not an element of 7 and such that for each i € Z,, there is exactly one P € w
with ¢ € P. If m consists of exactly k subsets, then 7 is called a partition of
size k. Let II,, denote the set of all partitions of Z,,, and let II,, ;, be the set
of all partitions of Z, of size k. A permutation group G of Z, induces the
following group action of G on II,,:

G x 11, — I1,,, (9,7) = gm:={gP| P €},

where gP := {gi | i € P}. This action can be restricted to an action of G on
I1,, .. The G-orbits on II,, are called G-mosaics. (This is a slight generalisation
of the definition given in [11].) Correspondingly the G-orbits on II,, , are called
G-mosaics of size k.

It is well known [2,3] how to enumerate G-mosaics (G-orbits of partitions)
by identifying them with G x S,-orbits on the set of all functions from Z,
to n := {1,...,n}. (The symmetric group of the set n is denoted by S,.)
Furthermore G-mosaics of size k correspond to G x Sg-orbits on the set of
all surjective functions from Z, to k. We want to express the number of G-
mosaics using the cycle index notion: The cycle index of a finite group G acting
on a finite set X is the following polynomial Z(G, X) in the indeterminates

Ty, Tg,...,xx| over Q, the set of rationals, defined by
1 X
Z(G, X) = —: Hx?t(g),
|G‘ geGi=1



where (a1(g),...,ax((g)) is the cycle type of the permutation induced by the
action of ¢ € G on X. This means that the induced permutation decomposes
into a;(g) disjoint cycles of length i for i = 1,...,|X|. Furthermore Z(G, X |
x; = f(i)) means that the variables z; in Z(G, X) must be replaced by the
expression f(7). Now we can apply a theorem from [2] to compute the number
of orbits of all (surjective) functions under the group action of G x S, (or
G x Sy respectively).

Theorem 1 For 1 <k <n let

My, =Z(G,Z, | z; = Gi-)Z<SE’k | z; = e*)

Y
x;=0

where s; == i(x;+ T+ . .—i—xi[%}) and where [%] is the greatest integer less than
or equal to . This cycle index expression indicates that the operators of the
first cycle index must be applied to the polynomial given by the substitution
into the second cycle index and finally all indeterminates that have not yet
vanished must be set to 0. The number of G-mosaics in Z, is given by M,
and the number of G-mosaics of size k is given by My — My_1, where My := 0.

The Cauchy-Frobenius-Lemma [12] computes My, as

Z ﬁal(gi)ai(g)’

| (9,0)€GX Sy i=1

1

M p—
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where a;(g) (or a;(c)) are the numbers of i-cycles in the cycle decomposition
of g (or o respectively).

Finally the number of G-mosaics of size k could be derived by the Cauchy-
Frobenius-Lemma [12] as

1 c(o) k a; (o) & a;(9)
ot X e S (Saw)
| | | _| (g)a’)EGXSE (=1 a =1 a; 7j=1 dlj
where the inner sum is taken over the sequences a = (ay, . .., ax) of nonnegative

integers a; such that Y% a; = ¢, and where c(c) is the number of all cycles
in the cycle decomposition of o.

In order to apply this Theorem one has to know the cycle indices of G and
Sk- The formulae for the cycle indices of C,, D,, and Sj are well known.
(See [2,12].) The cycle index of Aff(1, Z,,) is computed in [20]. All these cycle
index methods are implemented in SYMMETRICA [19], a computer algebra
system devoted to combinatorics and representation theory of the symmetric



group and of related groups. Using this program system for twelve tone mu-
sic the following numbers of Ciy, Dy and Aff(1, Z15)-mosaics of size k were
computed. (See table 1.)

Table 1
Number of mosaics in twelve tone music.
G\k H 1 2 3 4 5 6 7 8 9 10 11 12

Ci2 1 179 7254 51075 115100 110462 52376 13299 1873 147 6 1
D12 1 121 3838 26148 58400 56079 26696 6907 1014 96 6 1
Aff(1, Z12) 1 87 2155 13730 30121 28867 13835 3667 571 63 5 1

In conclusion there are 351773 C'o-mosaics, 179307 Diy-mosaics and 93103
Aff(1, Z15)-mosaics in twelve tone music.

2 Enumeration by block-type

If 7 € II,, consists of \; blocks of size ¢ for 7+ € n then 7 is said to be of block-
type A = (A1, ..., Ay). From the definition it is obvious that Y, i\; = n, which
will be indicated by A H n. Furthermore it is clear that 7 is a partition of
size 3°; A;. In this section the number of G-mosaics of type A (i. e. G-patterns
of partitions of block-type A) will be derived. For doing that let A be any
partition of type A. (For instance A can be defined such that the blocks of A
of size 1 are given by {1}, {2}, ..., {\}, the blocks of X of size 2 are given
by {1+ LA +2} {0\ +3, A +4}, .. {A + 20 — 1, A\ +2)}, and so on.)
According to [12] the stabilizer Hy of X in the symmetric group S, (H, is the
set of all permutations o € S, such that oA = ) is similar to the direct sum

@ Sﬁ[sz]

of compositions of symmetric groups, which is a permutation representation
of the direct product

,Ql Si1 Sy,

of wreath products of symmetric groups. The wreath product is defined by

Siv8;={(w,0) |0 €S0 — S}

together with the multiplication

(¥, 0)(¢',0") = (Vig, 007),



where i, (i) = ¢ (i), (i) and ¢/, (i) = ¢'(c~"4). The composition Sy, [S;] is
the following permutation representation of S; ¢ Sy, on the set i X A;

((¢,0), (r,s)) = ($(a(s))r,0(s)).

In other words H) is the set of all permutations o € S,,, which map each
block of the partition A again onto a block (of the same size) of the partition.
It is well known that the cycle index of the composition of two groups can be
determined from the cycle indices of the two groups ([12]), so we know how
to compute the cycle index of H).

All partitions of Z,, of type A can be derived in the form {f~'(P) | P € A},
where f runs through the set of all bijective mappings from Z,, to n. Two such
bijections f and f’ define the same partition of Z,,, if and only if f' = f oo,
where ¢ is an element of the stabilizer Hy of A. This induces a group action
of H, on the set of all bijections from Z, to n

Hy xngs —nyg, (0, f) = foo™,

such that the Hy-orbits correspond to the partitions of Z,, of type A.

Since the action of G on II,, can be restricted to an action of G on II,, the
set of all partitions of type A, we have the following action on the set of all
bijections from Z,, to n:

Gxnlp —nlr,  (9.f)—golf.

Two bijections f and f’ from Z, to n define G-equivalent partitions of type
A, if and only if there is some g € G such that g o f and f’ define the same
partition, which implies that there is some o € H, such that go foo™! = f.
In conclusion we can say that G-mosaics of type A correspond to G x Hy-orbits
of bijections from Z,, to n under the following group action:

(G x Hy) xnfr —nfr,  ((g.0),f)—gofoo™

It is well known how to enumerate these orbits. When interpreting the bijec-
tions from Z, to n as permutations of the n-set n then G-mosaics of type A
correspond to double cosets ([12]) of the form

G\ S,/ H.

Theorem 2 The number of G-mosaics of type X\ can be derived with the fol-



lowing formula due to N. G. de Bruijn [2]

0
8:17i

Z(G, Zn | €T; = )Z(H)\, | xT; = L’L'Z)LCZ:O

The Cauchy-Frobenius-Lemma [12] determines the number of orbits of bijec-
tions from Z, to n under the action of G X Hy by

S [[alo)i®),

(9,0)EGX Hy i=1
z(g)=z(o)

1
|G| Ha|

where z(g) and z(o) are the cycle types of the permutations induced by the ac-
tions of g on the set Z,, and of o on n respectively, given in the form (a;(g))ien
or (ai(0))ien- In other words we are summing over those pairs (g, o) such that
g and o determine permutations of the same cycle type.

The double coset approach leads to an application of the Redfield cap-opera-
tor [12] or to Read’s N(. *.) operator [14,15], and the number of G-mosaics
of type X\ is given by

Z(G,Z,)NZ(Hy,n) or N(Z(G,Z,)* Z(Hx,n)).

Table 2 gives the numbers of Djs-mosaics of type A, (in this table the type
(A1, ..., \n) of a partition is written in the form (1*1,2*2...), where all terms
with \; = 0 are omitted) which were computed by using SYMMETRICA
routines for the Redfield-cap operator.

If n is even then a mosaic consisting of two blocks of size n/2 corresponds
to a trope introduced by J. M. Hauer in [9,10]. By applying the power group
enumeration theorem ([8]) an explicit formula for the number of all orbits of
tropes under a group action was determined in [4].

3 Enumeration by stabilizer type

Let U < G be a subgroup of GG, then a partition 7w € II,, is called U-invariant
if gm = 7 for all g € U. The set of all U-invariant partitions will be denoted by
(IL,,);- The stabilizer of a partition 7 is the subgroup U := {g € G | g = 7}
of G. The stabilizers of all partitions in the orbit G() of 7 lie in the conjugacy
class U of the stabilizer U of 7. So the orbit G(r) is called of stabilizer type
U. The set of all orbits of type U is also called the U-stratum and it will
be indicated as U\\\IL,,. The Lemma of Burnside provides a formula which



Table 2
Number of Dy9-mosaics in twelve tone music of type A.

2610 (23,32
424 (1,243
340 (19,3
2325|| (19,23

6005 || (12,22, 32
8725| (13,233
12 (26
645 (18,22

17630 (14,2,32
11623 (15,22,3
554 (12,25
84 (1102

5890
3510
2792

A A A A
(12)1 (1,11)|1 (2,10)|6 (12,10)|6
(3,9)[12 (1,2,9)|30 (13,9)[12 (4,8)[29
(1,3,8)[85 (22,8)|84 (12,2,8)]140 (14,8)]29

(5,7)[38 (1,4,7)|170 (2,3,7)|340 (12,3,7)|340
(1,22,7)[510 || (13,2,7)|340 (1°,7)|38 (62)|35
(1,5,6)|236 (2,4,6)|610 | (12,4,6)|610 (32,6)[424
(1,2,3,6)[2320|| (13,3,6)(781 (23,6)|645 || (12,22,6)[1820
(14,2,6)|610 (16,6)|50 (2,52)]386 (12,52)|386
(3,4,5)[1170| (1,2,4,5)|3480| (1%,4,5)|1170 || (1,3%,5)(2330
(22,3,5)|3510(/(1%,2,3,5)|6960| (1*,3,5)[1170 (1,23,5)[3500
(13,22,5)|3510| (1°,2,5)|708 (17,5)|38 (43)]297
(1,3,4%)|2915(  (22,4%)|2347| (12,2,4%)|4470 (14,42)(792
(2,3%,4)|5890( (12,32,4)|5890| (1,22,3,4)|17370|(13,2,3,4)|11580
(15,3,4)|1170 (24,4)|2325| (12,23,4)|8860 || (14,22 4)|4463
(16,2,4)610 (18,4)|29 (314|713 (1,2,3%)|7740
) ) ) )
) ) ) )
) ) ) )
) ) ) )
)

allows the numbers of G-orbits of type U to be computed from the number of
V-invariant partitions for U,V < G. In [12] it is formulated in the following
way: Let Uy, ..., Uy be the conjugacy classes of subgroups of G then

UL | = B(@) | 1), |,



where B(G) := (bij),; ;<4 is the Burnside matriz of G given by

o
by = S ULV
j |G/U|V€ZU )

where p is the Moebius function in the incidence algebra over the subgroup
lattice L(G) of G. So, for computing the number of U-strata, we have to
determine the number of V-invariant partitions. In [21] the following formula
is proved:

Theorem 3 Let T be a system of representatives of the G-orbits on X and
let H be a system of representatives of the conjugacy classes of G (e. g. H =
{U,...,Uq}). Then the number of G-invariant partitions of X is given by

> 1>

o€llr Aeo UEH

mU G
7 It

where Il denotes the set of all partitions 0 of T. The blocks of the partition §
are indicated as A. Fort € X the stabilizer of t in G is denoted by G;. Finally
for subgroups U,V of G

[Ne(U)]

mU(V) =

1s the mark of U at V', where ( is the zeta-function in the incidence algebra
over L(G).

In the case that U € U}- and V € (7, then

wel;

mU(V) = mz-j =

IJI

The matrix M(G) = (my;),.; ;4 is called the table of marks of G' and it is
the inverse of the Burnside matrix B(G).

The conjugacy classes of subgroups of C,, are well known. In [5] it is shown
that a system of representatives of the conjugacy classes of subgroups of D,
(for n € N) is given as a disjoint union

U R(d),

dln



where

A system of representatives of the conjugacy classes of subgroups of Dis to-
gether with the numbers of U-invariant partitions and the numbers of Dj,-
orbits of stabilizer type U is given in the table 3: T stands for the permutation
(0,1,2,...,11) and I stands for the permutation (0)(1,11)(2,10)(3,9)(4,8)
(5,7)(6). In table 4 a list of all the 54 conjugacy classes of subgroups of
Aff(1, Zy5) together with the number of U-invariant partitions and the number
of U-strata is given. (The subgroup lattice of Aff(1, Z}5) was computed with
GAP [6].) The permutation @ is given by (0)(1,5)(2,10)(3)(4, 8)(6)(7,11)(9).

Table 3

(1%, (T, 1)}

U-invariant partitions and U-strata for Dqs-mosaics

The number of all Uy-invariant partitions is just the number of all partitions of
12 which is the Bell-number B(12). The Burnside matrix of D;5 was derived
by inverting the table of marks of D5 computed with the computer algebra

system GAP.

(T%), (T, 1), (T, TT)} if d = 0 mod 2
if d =1 mod 2.

order ‘ff‘ |(T112) | |ﬁ\\\H12‘

1

o O O O R e e W NN NN

— =
N NN

24

1
1

= W W =

=W NN

1
1

4213597
6841
6841
6841

268
111
349
319
28
56
54
37
18
16
6

6

172037

416
3227
3242
11
2
150

136

19
19
31

S O ot O



Table 4

U-invariant partitions and U-strata for Aff(1, Z12)-mosaics

group H order |’l7} |(H12)U{ |E\\\H12| || group || order |5| |(H12)U| |5\\\H12|
(1) 1 1 4213597 83267 (T3, 1Q) 8 1 81 1
(T%) 2 1 6841 140 (T%, 1, Q) 8 3 245 102
(IQ) 2 2 43693 3109 (T8, T%Q, T3 I1Q) 8 3 91 29
(T3I1Q) 2 2 6841 395 (T3, T%Q) 8 3 31 1
(Q) 2 3 14325 1407 (T3, 1) 8 3 37 4
(T?Q) 2 3 6841 592 (T3Q, I) 8 3 37 4
(I) 2 6 6841 1244 (TQ, TI) 8 3 81 25
(TT) 2 6 6841 1474 (TQ, T?) 12 1 8 0
(T 3 1 268 3 (T) 12 1 6 0
(T3) 4 1 111 0 (T2%1Q, TO) 12 1 20 0
(T%, I1Q) 4 1 1913 88 (T2, 1) 12 1 18 0
(1%, T31Q) 4 1 319 3 (T2, TI) 12 1 16 1
(TQ) 4 3 111 5 (TIQ, T%) 12 1 10 0
(T8, TI) 4 3 319 41 (T2, Q) 12 1 22 0
(T, Q) 4 3 469 40 (TI,Q) 12 2 22 6
(TS, 1) 4 3 349 22 (TI1,T%Q) 12 2 16 3
(T*Q, TI) 4 6 469 183 (T?1,Q) 12 2 34 8
(T'°Q, TI) 4 6 319 111 (T?Q, 1) 12 2 28 5
(1,Q) 4 6 1159 449 (T1°Q, T1,1Q) 16 3 29 23
(IQ,T?Q) 4 6 835 290 (T8, T%2Q, I) 24 1 18 6
(T*, Q) 6 1 94 2 (T3Q, TI) 24 1 8 1
(T*, T2 Q) 6 1 54 0 (T3, TIQ) 24 1 6 0
(T?) 6 1 28 0 (T%,T2Q, TI) 24 1 10 2
(TIQ) 6 2 28 0 (TQ, I) 24 1 6 0
(T4, T1) 6 2 54 5 (T, Q) 24 1 6 0
(T*, 1) 6 2 56 3 (T, I) 24 1 6 0
(T?1Q) 6 2 58 3 (T, I, Q) 48 1 6 6
1-1-6 -6 —1 . 6 6 1 6 6 . —6 —6
2 . . . -2 -6 —6 —2 . .12 6 6 2 —12
12 . . . —12 . —12 . .12
12 . . . =12 . =12 . .12
3 -3 —6 —6 6 6
4 —12 —4 12
12 . . . . =12 —12 12
1 12 . . .-12 . -12 12
B(Dyp) = —
24 6 . .. —6 -6 -6 12
12 . . —12
12 . . =12
24 . =24
12 . —12
12 . —12
12 —12
24

In the same way the table of marks and the Burnside matrix of Aff(1, Z2)

can be computed.
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From the previous section we know that partitions of block-type A H n corre-
spond to the right cosets Hyf in H)\S,. The partition H,f is U-invariant, if
and only if H, fU = H) f. This implies

Hyfu= H),fforalueU
Hyfuf ' = Hyfor allu € U
fUf' < H,.

So the number of U-invariant partitions of block-type A is

{Hyf € H\S,y | fUF < Hy}| = fenly| fUF <HY|.

il

And the number of all U-invariant partitions is given by

S |{Hs € 1S, | U < ]

AHn

This formula can be found in [13].

In the case when U = (u) and u is of cycle type (ay, . . ., a,) then these formulae
can be expressed using the Redfield-cap operator:

[[z{nZ(H\ n) or Hﬁ“%ﬁ(ZZ Hy,n )

i=1 AHn

Finally we will enumerate GG-mosaics according to their block-type \ and sta-
bilizer type U. The formula of D. E. White and S. G. Williamson can be
extended to a weighted formula in the following way. Define a weight function
w: I, — Qlxy, ..., z,| such that the weight of all partitions 7 of block-type A
is equal to []" Al

Theorem 4 Then the sum of the weights of all G-invariant partitions is de-
rived by:

S T Y (o TG o

sclly ACSUEH teA
where

0= UG-

teA

11



PROOF. From the proof in [21] it is obvious that m [Tica mu(Gt) counts
partitions of n consisting of |G|/ |U| blocks P of size Y ,c4|U|/|G:| each,
since each of these blocks P is the disjoint union of sets of size |U| /|G| for

te A. O

The numbers of Djs-mosaics of block-type A H 12 and stabilizer type (7]- for
1 < j <16 are the coefficients of [[}2, 2} in the following list:

Uy = 3200320m7 4+ 67825 20w5 + 760030516 + 114025 0324 + 54623 w026 +

19523 + 546x9x476 + 28601 7323 + 1140237475 + 1648720306 + 11402 0375 +
11480x3x3w3 + 28x517 + 14w + Tr3T9 + 3497376 + 3092002 + 441378 +
20042223 + 5162316 + H554rsw3 + 20222574 + 3092302 + 24122325 + Tadzy +
2527323 + 14xtxg + 6602 s + 20222128 + 2823 w7 + 2928w + 3492822 +
5162823 + 28275 + 14281y + 442523 + Talws + 3202 w9x3 + 34507 292475 +
2300z Tow376 + 1728071 2303704 + 690023007375 + 1152023097374 + 58125 +
82 + 33725 + 320z9w317 + 566219137y + 3420231375 + 22601 0576 +

160z 12477 4+ 80212378 + 2290x1:z;§x5 + 25z x99 + 76601:1:U2x§ + 480:1;1x§x7 +
3430x1x§x5 + 8600x1x§x3 + 546231476 + 320x%x3x7 + 5662x%x§x4 +

10822 w9xs + 419622973 + 17026237322 + 8468z3w3x,y + 11402334705 +
342023 x3ws + 56621 T0w: + 42082 w31, + 3420232303 + 54628T014,

Uy : Axizgxe + 623 4 dzgwaze + 12022206 + badeg + 6002 + 232222 +

956 + 41373 + 18w3wy + 62322 + 34aix) + Txjrd + 18xxs + xSx6 + Halal +
92823 + 825 + x2 + 1125 + 18x9x3xy + 4aivyae + 1823231y + 203w0m8 +
2423923 + 5Axix3xl + 3223 wiwy + 182 wex? + 1daiwdny + 4alwomy,

Us : 2003 w027+ 30202025+ 1923 w326+ 3000 0524 + 2823 w026+ 2303 +28w0 426+
5512373 + 3031475 + 64020376 + 302 w375 + 137030303 + 102577 + 61478 +
42319+262376+ 212010+ 197002+ 142305 +66 2305 +4305 06+ 11 T2 03 +88 7504+
T1211 + 223010 + 192322 + 9022 205 + dwdwg + 762323 4 621 w8 + 382123 4 887 i) +
102527482816+ 262823+ 432523+ 102 w5+ 62804 + 142803 + 4223+ 202 T 2023+
3021092475 + 2001 221376 + 9071 137314 + 6022 201375 + 6025 0374 + 201000 +
33x4 + 422 + 3325 + 20x9x 317 + 869037y + 90z 2375 + 102175276 + 1021 2477 +
5211378 + 40210375 + 511099 + 8011 Toxs + 3011 2307 + 701 2305 + 1250 0573+
28737416 + 2023 w307 + 8673 03wy + 14030978 + T8TIw0w] + 178232323 +
144x3 524+ 30230475 + 9023 0305 + 862 102+ 982 2374 + 9023 2313 + 2828 2024,

(74 : 30x‘11x2x6 + 5555;9’1 + 30x9x46 + 90x%x%x6 + 6478 + 39x§x6 + 3x9119 +
48x91% + 1823 1s + 2162323 + 6Ta3xe + 277523 + 1682524 + 323 w10 + 482322 +
2432215 +6x{wg+ 722 03+ 1680 wd+ 92506+ 3928 22 + 672523+ 62824 + 182823+
3x%0x2 + 72m§ + 15x% + 130:c§ + 120x2x§x4 + 30x%x4x6 + 120x%x§x4 + 15x%x2x8 +
165231977 + 360232323 + 21022232y + 1202 w023 + 126217374 + 30282024,

Us: x3x3we + 23 + 3xiwdes + 3xixd + 34,

12



Us: 73+ xjziny,

Ur @ 22109m6+ 215 + 2000406+ 6230306 + 1478+ 30306 + 1o 10+ 42202 + 30378+
2.2 3 3,.2 4 2 2,.2 2.5 | 4 4,2 4,4
drsxi+drsxe+11asxs+Trswy+rirg+4xies +13xics + i rs +3vios +Txirs+
28w+ 32822 + 52803 + 2y + 3282% + 21070 + 203 + 45 + dwoxiay + 20346 +
4r3rdry+2irewsg+ 1ol wond + 1203 0323+ 6iriw s+ Arivond + Tatrdn,+ 228 vomy,

7. - 8
Us : T3+ waws + 4a3xg + 302323 + 17xqwy + viwg + 9xin] + 17xiws + xbzy +
42823 + 625 + 412 + 2625 + 9ziriny,

(7, - 3 3 3.3 3 3.2 3 3.3 6.3
Ui 1 272376 + 2 + 3072523 + 329 + Thx6 + Tox5 + 2709 + 4wy + 2775 +
xizs + 375 + 25,

Upp : 32823 + 2823 + 28x6 + 428 + 32323 + 3wdwe + 2326 + 323,

7. mdod 4,2 | 4 8.2 6 2,2 | .2 8 4

Uip @ dxfwy + 3xixs + xixs + 2525 + 4oy + 3asx; + 2508 + 2504 + dx5x +
225 4 wqws + 33 + 2,

Uiz : 2923 + 2822 + 2826 + 2322 + 2316 + 2326,

Urg o 32§+ ad + 22,

Ue : T12 + 22 + 23 + x5 + 25 + 212
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