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The functional equation of the mean sun written as a
group action

Harald Fripertinger∗

Abstract

A generalization g(s+t)x(u) = g(s)x(t+u) (∀s, t, u ∈ R) of the functional equation
of the mean sun is studied, where a group G acts on a set X, (R, +) is a not
necessarily commutative group and both x : R → X and g : R → G are unknown
functions, which will be determined by the equation.

Local solar time is measured by a sundial. When the center of the sun is on an
observer’s meridian, the observer’s local solar time is zero hours (noon). Because the
earth moves with varying speed in its orbit at different times of the year and because the
plane of the earth’s equator is inclined to its orbital plane, the length of the solar day
is different depending on the time of year. It is more convenient to define time in terms
of the average of local solar time. Such time, called mean solar time, may be thought of
as being measured relative to an imaginary sun (the mean sun) that lies in the earth’s
equatorial plane and about which the earth orbits with constant speed. Every mean
solar day is of the same length.1

In [5, 2] it is shown that the mean sun satisfies the functional equation

M(λ + t, φ)T y(s) = M(λ, φ)T y(s + t) ∀s, t, λ ∈ R, −π/2 < φ < π/2,

where y(s) is a vector of length 1 which is the direction from the center of the earth to
the sun at the time s (one day corresponds to 2π) expressed in a geocentric coordinate
system. As a basis of this system we can choose two orthogonal vectors in the equatorial
plane and one vector along the axis of the earth. M(λ, φ) is the matrix

M(λ, φ) =



− sin λ − sin φ cos λ cos φ cos λ
cos λ − sin φ sin λ cos φ sin λ

0 cos φ sin φ


 .

Then M(λ, φ)y(s) is the direction from the earth to the sun expressed in a local coordi-
nate system on the surface of the earth in the point of longitude λ and latitude φ. This
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local coordinate frame is given by the unit vectors indicating the directions East, North,
and to the zenith.

In the present paper we investigate a generalization of this equation for fixed φ. To
be more precise, we will deal with the following problem:

Let (G, ·) be a group acting on a set X (cf. [1, 3, 4, 6]) and let (R, +) be a not
necessarily commutative group. Find all functions x : R → X and g : R → G, which
satisfy

g(s + t)x(u) = g(s)x(t + u), ∀s, t, u ∈ R. (1)

The group R is a generalization of R, the matrices expressing the change of the coordinate
system are now elements of the group G, and X represents a generalization of the set of
all vectors in R3.

First we want to give some basic definitions about group actions. A group action of
the (multiplicative) group G on the set X is given by a mapping

G×X → X, (γ, x) 7→ γx,

which satisfies 1x = x and (γ2γ1)x = γ2(γ1x) for all x ∈ X and γ1, γ2 ∈ G, where 1 is
the identity element in G. In other words, a group action describes a homomorphism
from G to the set of all bijections on X, which is a group together with the composition
of functions as the multiplication in the group. Conversely, each homomorphism of this
kind determines a group action of G on X.

A group action of G on X defines an equivalence relation on X. Two elements x1, x2

of x are called G-equivalent, x1 ∼G x2, if and only if there is some γ ∈ G such that
x2 = γx1. The equivalence classes G(x) with respect to ∼G are called orbits of G on X,
i.e.

G(x) = {γx | γ ∈ G} .

For each x ∈ X the stabilizer Gx of x, which is the set

Gx := {γ ∈ G | γx = x}

is a subgroup of G.

Two elements x and y of the same orbit have conjugate stabilizers. To be more
precise, if y = γx for γ ∈ G, then Gy = γGxγ

−1.

Coming back to the functional equation (1), we start with collecting some properties
of the functions g and x. Later we determine all solutions g and x of (1). In a first step
we replace g by another function h : R → G, defined by

h(r) := g(0)−1g(r).

The properties of h are described in
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Lemma 1. Assume that (g, x) is a solution of (1). Then the function h, defined above,
satisfies h(0) = 1 ∈ G,

h(s)x(u) = x(s + u), ∀s, u ∈ R, (2)

and
h(s + t)x(u) = h(s)h(t)x(u), ∀s, t, u ∈ R. (3)

Proof. The first statement is clear from the definition of h. Then h(s)x(u) =
g(0)−1g(s)x(u) = g(0)−1g(0 + s)x(u) = g(0)−1g(0)x(s + u) = x(s + u) for all s, u ∈ R.
Finally h(s + t)x(u) = g(0)−1g(s + t)x(u) = g(0)−1g(s)x(t + u) = h(s)h(t)x(u) for all
s, t, u ∈ R. 2

It is also possible to determine g by h.

Lemma 2. If the functions x : R → X and h : R → G satisfy (2), then for arbitrary
g0 ∈ G the function g : R → G defined by g(r) := g0h(r) together with x satisfies (1).

Proof. g(s + t)x(u) = g0h(s + t)x(u) = g0x(s + t + u) = g0h(s)x(t + u) = g(s)x(t + u).
2

For the rest of the paper we will work with h instead of g. As was indicated earlier, for
x ∈ X let Gx denote the stabilizer of x. From (3) we deduce that (h(s)h(t))−1 h(s+ t) ∈
Gx(u) for all u ∈ R and all s, t ∈ R. In other words

(h(s)h(t))−1 h(s + t) ∈
⋂
u∈R

Gx(u) =: Ĝ.

Using this for t = −s, we see that there exists γs ∈ Ĝ, such that h(s)−1 = h(−s)γs. And
for s = −t there is γ′t ∈ Ĝ, such that h(t)−1 = γ′th(−t).

Let H := 〈h(R)〉 and G̃ := Ĝ ∩H, then the following lemma holds.

Lemma 3. The subgroup G̃ of H is normal.

Proof. It is clear that G̃ is a subgroup of H. We only have to prove that it is a normal
subgroup. From the definition of H we know that

H =

{
n∏

i=1

h(ri)
ji | n ∈ N, ri ∈ R, ji ∈ {1,−1}

}
.

So it is enough to prove that h(r)G̃h(r)−1 ≤ G̃ and h(r)−1G̃h(r) ≤ G̃ for all r ∈
R. Let r, u ∈ R and γ ∈ G̃, then there is a γ′r ∈ Ĝ, such that h(r)γh(r)−1x(u) =
h(r)γγ′rh(−r)x(u) = h(r)γγ′rx(−r + u) = h(r)x(−r + u) = x(r − r + u) = x(u), since
γγ′r ∈ Ĝ stabilizes each element of the form x(t). This means, since γ was an arbitrary
element of G̃, that

h(r)G̃h(r)−1 ≤ Gx(u), ∀u ∈ R,

so h(r)G̃h(r)−1 ≤ Ĝ ∩H = G̃. For the second part of the proof similar arguments can
be used. 2



28 H. Fripertinger

This permits to define a function ϕ from R to the factor group H/G̃ by

ϕ(r) := h(r)G̃ =: h(r).

Lemma 4. The mapping ϕ is a surjective group homomorphism.

Proof. For s, t ∈ R we know from (3) that h(s)h(t) ∈ h(s + t)G̃. So

ϕ(s + t) = h(s + t)G̃ = h(s)h(t)G̃ = h(s)G̃h(t)G̃ = ϕ(s)ϕ(t).

In order to prove that ϕ is surjective let

y :=

(
n∏

i=1

h(ri)
ji

)
G̃ =

n∏
i=1

h(ri)ji ∈ H/G̃.

Then

y =
n∏

i=1

h(ri)ji =
n∏

i=1

h(ri)
ji

=
n∏

i=1

ϕ(ri)
ji =

n∏
i=1

ϕ(ji · ri) = ϕ

(
n∑

i=1

ji · ri

)

and
∑n

i=1 ji · ri ∈ R. 2

Even the following result is true.

Lemma 5. If a subgroup N of Gx(0) is a normal subgroup of H, then N is a subgroup

of G̃.

Proof. It is enough to prove that N is a subgroup of Gx(u) for all u ∈ R, because then

N is a subgroup of Ĝ. By assumption N ≤ H, so N ≤ G̃. From (2) it is clear that
x(u) = h(u)x(0) for all u ∈ R, so Gx(u) = Gh(u)x(0) = h(u)Gx(0)h(u)−1. Since N is a
normal subgroup of H, it is obvious that N = h(u)Nh(u)−1 ≤ h(u)Gx(0)h(u)−1 = Gx(u).

2

So far we derived necessary conditions for solutions of (2). Before describing sufficient
conditions we prove a general result about group actions.

Lemma 6. Consider a group G acting on a set X. Let S be a subgroup of G, x0 an
arbitrary element of X, and N a normal subgroup of S, such that N is a subgroup of the
stabilizer Gx0. Then the factor group S/N acts on the orbit S(x0) in the following way:

S/N × S(x0) → S(x0) (η̄, κx0) 7→ (ηκ)x0. (4)

Proof. In order to prove that this action is well defined, consider an arbitrary ν ∈ N .
Since N is a normal subgroup of S, for each κ ∈ S there exists ν ′ ∈ N , such that
νκ = κν ′. From

(ην)κx0 = η(νκ)x0 = η(κν ′)x0 = (ηκ)ν ′x0 = (ηκ)x0,

we derive that the action of η̄ on H(x0) does not depend on the special choice of the
representative of η̄. Furthermore, it is clear that 1̄κx0 = 1κx0 = κx0, and (η̄1η̄2)κx0 =
η1η2κx0 = (η1η2)κx0 = η1(η2κ)x0 = η̄1(η2κx0) = η̄1(η̄2κx0) for all η̄1, η̄2 ∈ S/N . 2
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Under the assumptions of the last lemma, N is a subgroup of each stabilizer Gηx0 for
η ∈ S, since

N = ηNη−1 ≤ ηGx0η
−1 = Gηx0 .

Lemma 7. Let G, x0, S and N be given as in Lemma 6 and let ψ : R → S/N be a
homomorphism. When defining the two functions x and h by x(r) := ψ(r)x0, and h(r)
being an arbitrary element in the coset ψ(r) for r ∈ R, then h and x satisfy (2).

Proof. h(s)x(u) = ψ(s)ψ(u)x0 = ψ(s + u)x0 = x(s + u) for all s, u ∈ R. 2

Finally all these results are summarized in

Theorem 8. The functions x : R → X and h : R → G satisfy (2) if and only if there
exist x0 ∈ X, a subgroup S of G, a normal subgroup N of S, which is a subgroup of the
stabilizer Gx0, and a homomorphism ψ : R → S/N , such that

x(r) = ψ(r)x0 and h(r) ∈ ψ(r), ∀r ∈ R,

where the natural action of the factor group S/R on the orbit S(x0) is described by (4).

Proof. If x and h satisfy (2), then choose x0 = x(0). Moreover, S = H, N = G̃, and
ψ = ϕ satisfy the above conditions by construction, Lemma 3 and Lemma 4. Finally,
by construction it is clear that h(r) ∈ ϕ(r), and from (2) it follows that ϕ(r)x0 =
h̄(r)x(0) = x(r) for all r ∈ R.

The rest of the present theorem follows immediately from Lemma 7. 2
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