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The translation equation

Translation equation

F(s+ t,x) = F
(
s,F(t,x)

)
, s, t ∈ C. (T)
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The translation equation

Translation equation

F(s+ t,x) = F
(
s,F(t,x)

)
, s, t ∈ C. (T)

We study solutions

F(s,x) = ∑
n≥1

cn(s)xn ∈ C[[x]]

of (T) in the ring of formal power series over C where cn:C→ C, n≥ 1,
c1(s) 6= 0, s ∈ C.

Solutions of (T) are called iteration groups.

(T) implies c1(s+ t) = c1(s)c1(t), s, t ∈ C, whence c1 is an exponential
function.
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Iteration groups of type I and II

Type I

If c1 6= 1, then F(s,x) is of type I.
Then cn(s) = Pn(c1(s)), s ∈ C, Pn(y) ∈ C[y], n≥ 1.

Type II

If c1 = 1 and if F(s,x) 6= x, then F(s,x) is of type II.
There exists an integer k ≥ 2 so that

F(s,x) = x+ ck(s)xk + ∑
n>k

cn(s)xn,

where ck 6= 0 is additive,
and cn(s) = Pn(ck(s)), s ∈ C, Pn(y) ∈ C[y], n≥ k.
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The cocycle equations

In connection with the problem of a covariant embedding of the linear
functional equation ϕ(p(x)) = a(x)ϕ(x)+b(x) with respect to an
iteration group (F(s,x))s∈C we have to solve the two cocycle equations

α(s+ t,x) = α(s,x)α
(
t,F(s,x)

)
, s, t ∈ C, (Co1)

β (s+ t,x) = β (s,x)α
(
t,F(s,x)

)
+β

(
t,F(s,x)

)
, s, t ∈ C, (Co2)

under the boundary conditions

α(0,x) = 1, β (0,x) = 0, (B1)

for
α(s,x) = ∑

n≥0
αn(s)xn, β (s,x) = ∑

n≥0
βn(s)xn.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P

(
a(s),a(t)

)
= 0 (or

P
(
e(s),e(t)

)
= 0) holds true for all s, t ∈ C, then P = 0.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P

(
a(s),a(t)

)
= 0 (or

P
(
e(s),e(t)

)
= 0) holds true for all s, t ∈ C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P

(
a(s),a(t)

)
= 0 (or

P
(
e(s),e(t)

)
= 0) holds true for all s, t ∈ C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.

In C[y] we have the formal derivation with respect to y.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P

(
a(s),a(t)

)
= 0 (or

P
(
e(s),e(t)

)
= 0) holds true for all s, t ∈ C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.

In C[y] we have the formal derivation with respect to y.

In (C[y])[[x]] we have the formal derivation with respect to x.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P

(
a(s),a(t)

)
= 0 (or

P
(
e(s),e(t)

)
= 0) holds true for all s, t ∈ C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.

In C[y] we have the formal derivation with respect to y.

In (C[y])[[x]] we have the formal derivation with respect to x.

Moreover the mixed chain rule is valid for formal derivations.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P

(
a(s),a(t)

)
= 0 (or

P
(
e(s),e(t)

)
= 0) holds true for all s, t ∈ C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.

In C[y] we have the formal derivation with respect to y.

In (C[y])[[x]] we have the formal derivation with respect to x.

Moreover the mixed chain rule is valid for formal derivations.

Differentiation is now a purely algebraic process!
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The formal translation equation

Formal translation equation in (C[y,z])[[x]] for iteration groups of type II

G(y+ z,x) = G
(
y,G(z,x)

)
(Tformal)

G(y,x) = x+ yxk + ∑
n>k

Pn(y)xn, Pn(y) ∈ C[y], n > k,

G(0,x) = x. (B)
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The formal translation equation

Formal translation equation in (C[y,z])[[x]] for iteration groups of type II

G(y+ z,x) = G
(
y,G(z,x)

)
(Tformal)

G(y,x) = x+ yxk + ∑
n>k

Pn(y)xn, Pn(y) ∈ C[y], n > k,

G(0,x) = x. (B)

Theorem. Let ck 6= 0 be an additive function. Then
F(s,x) = x+ ck(s)xk +∑n>k Pn(ck(s))xn is a solution of (T) if and only if
G(y,x) = x+ yxk +∑n>k Pn(y)xn is a solution of (Tformal) and (B).
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The formal translation equation

Formal translation equation in (C[y,z])[[x]] for iteration groups of type II

G(y+ z,x) = G
(
y,G(z,x)

)
(Tformal)

G(y,x) = x+ yxk + ∑
n>k

Pn(y)xn, Pn(y) ∈ C[y], n > k,

G(0,x) = x. (B)

Theorem. Let ck 6= 0 be an additive function. Then
F(s,x) = x+ ck(s)xk +∑n>k Pn(ck(s))xn is a solution of (T) if and only if
G(y,x) = x+ yxk +∑n>k Pn(y)xn is a solution of (Tformal) and (B).

Theorem. For any formal generator H(x) = xk +∑n>k hnxn there exists
exactly one solution G(y,x) of (Tformal) and (B) so that
∂

∂y G(y,x)|y=0 = H(x).
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The first cocycle equation

For each generator K(x) = ∑n≥1 κnxn and each generalized exponential
function α0 there exists exactly one solution α of (Co1) which satisfies
α(0,x) = 1. It is given by

α(s,x) = α0(s)
E(G(ck(s),x))

E(x)

k−1

∏
j=1

exp
(

κ j

∫
[G(σ ,x)] j dσ |σ=ck(s)

)
︸ ︷︷ ︸

=:P(s,x)

,

where E(x) = exp(Ẽ(x)) and Ẽ(x) =
∑n≥k κnxn

H(x)
, and G(U,x) is a

solution of (Tformal) with generator H(x) and ck 6= 0 is additive.
Conversely, each solution of (Co1) can be obtained in this form.
P(s,x) satisfies (Co1) and P(0,x) = 1.
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The second cocycle equation

This representation of α motivates to study the series

∆(s,x) :=
β (s,x)

E(x)α(s,x)
=

β (s,x)
α0(s)E(G(ck(s,x)))P(s,x)

instead of β .
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The second cocycle equation

This representation of α motivates to study the series

∆(s,x) :=
β (s,x)

E(x)α(s,x)
=

β (s,x)
α0(s)E(G(ck(s,x)))P(s,x)

instead of β .

Then β satisfies (Co2) and (B1) if and only if ∆(s,x) = ∑n≥0 ∆n(s)xn

satisfies

∆(s+ t,x) = ∆(s,x)+α0(s)−1P(s,x)−1
∆(t,G(ck(s),x)) (Co2’)

and ∆(0,x) = 0.

The inverse P(s,x)−1 is a polynomial in ck(s) and we indicate it as
P̃(ck(s),x).
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The formal second cocycle equation

We study different cases:
α0 6= 1,

http://www.uni-graz.at
http://www.uni-graz.at/~fripert/


Home Page

Title Page

Contents

JJ II

J I

Page 11 of 22

Go Back

Full Screen

Close

Quit

The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
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The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
α0 = 1 and P̃(ck(s),x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0,
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The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
α0 = 1 and P̃(ck(s),x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 6∈ Z≥0,
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The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
α0 = 1 and P̃(ck(s),x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 6∈ Z≥0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 ∈ Z>0.
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The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
α0 = 1 and P̃(ck(s),x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 6∈ Z≥0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 ∈ Z>0.

In all situations ∆n(s) is a polynomial in ck(s).
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The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
α0 = 1 and P̃(ck(s),x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 6∈ Z≥0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 ∈ Z>0.

In all situations ∆n(s) is a polynomial in ck(s).In some cases also a
polynomial of degree 1 in α

−1
0 (s)
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The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
α0 = 1 and P̃(ck(s),x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 6∈ Z≥0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 ∈ Z>0.

In all situations ∆n(s) is a polynomial in ck(s).In some cases also a
polynomial of degree 1 in α

−1
0 (s)or a polynomial of degree 1 in an

arbitrary additive function A(s).
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The formal second cocycle equation

We study different cases:
α0 6= 1,
α0 = 1 and P̃(ck(s),x) = 1,
α0 = 1 and P̃(ck(s),x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 6∈ Z≥0,
α0 = 1 and P̃(ck(s),x) = 1−κk−1xk−1+ . . . and κk−1 ∈ Z>0.

In all situations ∆n(s) is a polynomial in ck(s).In some cases also a
polynomial of degree 1 in α

−1
0 (s)or a polynomial of degree 1 in an

arbitrary additive function A(s).Since (Co2’) holds for all s, t ∈ C we can
replace the values ck(s),ck(t) by indeterminates U,V , α

−1
0 (s),α−1

0 (t) by
S,T and A(s),A(t) by σ ,τ . This yields the formal equation
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R(ST,U +V,σ + τ,x) = R(S,U,σ ,x)+Sλ P̃(U,x)R(T,V,τ,G(U,x))
(Co2formal)

where λ ∈ {0,1}. The series P̃(U,x) and G(U,x) are solutions of the
formal version of (Co1) respectively of (Tformal).

We study solutions of (Co2formal) satisfying the boundary condition

R(1,0,0,x) = 0. (B)
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Three differential equations derived from (Co2formal)

Differentiation of (Co2formal) with respect to T and setting T = 1, V = 0,
and τ = 0 yields

S
∂

∂S
R(S,U,σ ,x) = Sλ P̃(U,x)NS(G(U,x)), (D1)

where NS(x) := ∂

∂S R(S,0,0,x)|S=1.
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Three differential equations derived from (Co2formal)

Differentiation of (Co2formal) with respect to T and setting T = 1, V = 0,
and τ = 0 yields

S
∂

∂S
R(S,U,σ ,x) = Sλ P̃(U,x)NS(G(U,x)), (D1)

where NS(x) := ∂

∂S R(S,0,0,x)|S=1.

Similarly by differentiating with respect to V or τ we obtain

∂

∂U
R(S,U,σ ,x) = Sλ P̃(U,x)NU(G(U,x)), (D2)

and
∂

∂σ
R(S,U,σ ,x) = Sλ P̃(U,x)Nσ(G(U,x)), (D3)

where NU(x) := ∂

∂U R(1,U,0,x)|U=0, and Nσ(x) := ∂

∂σ
R(1,0,σ ,x)|σ=0.
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Solutions of (D1), (D2), (D3) and (B) for λ = 1

R(S,U,σ ,x) = SP̃(U,x)NS(G(U,x))−NS(x)
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Solutions of (D1), (D2), (D3) and (B) for λ = 1

R(S,U,σ ,x) = SP̃(U,x)NS(G(U,x))−NS(x)

Relations for the generators NS, NU , and Nσ .

Nσ = 0

∂

∂U

(
P̃(U,x)NS(G(U,x))

)
= SP̃(U,x)NU(G(U,x)).
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Solutions of (D1), (D2), (D3) and (B) for λ = 1

R(S,U,σ ,x) = SP̃(U,x)NS(G(U,x))−NS(x)

Relations for the generators NS, NU , and Nσ .

Nσ = 0

∂

∂U

(
P̃(U,x)NS(G(U,x))

)
= SP̃(U,x)NU(G(U,x)).

Each solution of of (D1), (D2), (D3), and (B) for λ = 1 is a solution of
(Co2formal) for λ = 1.

This representation of the solutions coincides with the representation
found in our previous papers.
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Solutions of (D1), (D2), (D3) and (B) for λ = 0

R(S,U,σ ,x) = σNσ(x)+
∫

P̃(U,x)NU(G(U,x))dU− c,

where
c =

∫
P̃(U,x)NU(G(U,x))dU

∣∣∣
U=0

.
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Solutions of (D1), (D2), (D3) and (B) for λ = 0

R(S,U,σ ,x) = σNσ(x)+
∫

P̃(U,x)NU(G(U,x))dU− c,

where
c =

∫
P̃(U,x)NU(G(U,x))dU

∣∣∣
U=0

.

Relations for the generators NS, NU , and Nσ .

NS = 0

∂

∂U

(
P̃(U,x)Nσ(G(U,x))

)
= 0. (∗)
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Solutions of (D1), (D2), (D3) and (B) for λ = 0

R(S,U,σ ,x) = σNσ(x)+
∫

P̃(U,x)NU(G(U,x))dU− c,

where
c =

∫
P̃(U,x)NU(G(U,x))dU

∣∣∣
U=0

.

Relations for the generators NS, NU , and Nσ .

NS = 0

∂

∂U

(
P̃(U,x)Nσ(G(U,x))

)
= 0. (∗)

Each solution of of (D1), (D2), (D3), and (B) for λ = 0 is a solution of
(Co2formal) for λ = 0.
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Studying (∗)

Using the formal part of the theory of Briot–Bouquet equations we get:

If P̃(U,x) = 1, then Nσ(x) ∈ C (constant).
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Studying (∗)

Using the formal part of the theory of Briot–Bouquet equations we get:

If P̃(U,x) = 1, then Nσ(x) ∈ C (constant).

If P̃(U,x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0, or r = k−1 and
κk−1 6∈ Z≥0, then Nσ(x) = 0.
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Studying (∗)

Using the formal part of the theory of Briot–Bouquet equations we get:

If P̃(U,x) = 1, then Nσ(x) ∈ C (constant).

If P̃(U,x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0, or r = k−1 and
κk−1 6∈ Z≥0, then Nσ(x) = 0.

If P̃(U,x) = 1−κk−1xk−1+ . . . and κk−1 = n1 ∈ Z>0, then

Nσ(x) = ∑
j≥n1

Nσ , jx j

where Nσ ,n1 is not determined, Nσ , j, j > n1, uniquely determined by (∗)
and Nσ ,n1.
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Comparing the solutions for λ = 0 with the solutions for λ = 1 we
analyze when we can write∫

P̃(U,x)NU(G(U,x))dU = F(G(U,x)) (◦)

for some F(x) = ∑n≥0 fnxn ∈ C[[x]].

If P̃(U,x) = 1, then (◦) is true whenever ordNU ≥ k. If so, then f0 is
arbitrary in C.
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Comparing the solutions for λ = 0 with the solutions for λ = 1 we
analyze when we can write∫

P̃(U,x)NU(G(U,x))dU = F(G(U,x)) (◦)

for some F(x) = ∑n≥0 fnxn ∈ C[[x]].

If P̃(U,x) = 1, then (◦) is true whenever ordNU ≥ k. If so, then f0 is
arbitrary in C.

If P̃(U,x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0, or r = k−1 and
κk−1 6∈ Z≥0, then (◦) is true whenever ordNU ≥ r. If so, then F is
uniquely determined.
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Comparing the solutions for λ = 0 with the solutions for λ = 1 we
analyze when we can write∫

P̃(U,x)NU(G(U,x))dU = F(G(U,x)) (◦)

for some F(x) = ∑n≥0 fnxn ∈ C[[x]].

If P̃(U,x) = 1, then (◦) is true whenever ordNU ≥ k. If so, then f0 is
arbitrary in C.

If P̃(U,x) = 1−κrxr + . . ., where r < k−1 and κr 6= 0, or r = k−1 and
κk−1 6∈ Z≥0, then (◦) is true whenever ordNU ≥ r. If so, then F is
uniquely determined.

If P̃(U,x) = 1−κk−1xk−1+ . . . and κk−1 = n1 ∈ Z>0, then (◦) is true
whenever ordNU ≥ k−1 and NU,n1+k−1 satisfies a polynomial relation in
NU, j for k ≤ j < n1+ k−1, which is also a polynomial relation in f j for
1≤ j < n1. If so, then fn1 is arbitrary, f0, . . . , fn1−1 are uniquely
determined and f j, j > n1, are uniquely determined depending on fn1.
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Reordering the summands

Now we consider the solutions R(S,Uσ ,x) of (Co2formal) as elements of
(C[S,σ ])[[U,x]], and rewrite them in the form

R(S,Uσ ,x) = ∑
n≥0

Qn(S,σ ,x)Un

with Qn(S,σ ,x) ∈ (C[S,σ ])[[x]].

In this situation we study another system of differential equations:
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Three (partial) differential equations from (Co2formal)

We determine another system of differential equations by differentiating
(Co2formal) with respect to S (U and σ ) and setting S = 1, U = 0, and
σ = 0:

T
∂

∂T
R(T,V,τ,x) = NT(x)+δλ ,1R(T,V,τ,x), (PD1)

∂

∂V
R(T,V,τ,x) = NV(x)+(

k−1

∑
j=r
−κ j)R(T,V,τ,x)+

∂

∂x
R(T,V,τ,x)H(x),

(PD2)
∂

∂τ
R(T,V,τ,x) = Nτ(x), (PD3)

where NT , NV and Nτ are generators.
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Integration by Differentiation

Using the reordered series R(S,Uσ ,x) = ∑n≥0 Qn(S,σ ,x)Un, it is easy
to solve (PD1), (PD2) (PD3), and (B):

E.g., the main computation is to solve equations of the form

nR̂n(x) =
k−1

∑
j=r

(−κ j)x jR̂n−1(x)+ R̂′n−1(x)H(x), n≥ 2,

where R̂n−1(x) is already computed.

This method yields new representations of solutions of (Co2formal).
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