On the formal second cocycle equation for iteration groups of type II

Harald Fripertinger Karl-Franzens-Universität Graz joint work with Ludwig Reich

50-th ISFE June 17–24, 2012 Hajdúszoboszlo, Hungary

Page 1 of 22

Bibliography

The first and second cocycle equation appeared while studying covariant embeddings of a linear functional equation with respect to an analytic iteration group. Cf.

[1] H.F. and L. Reich: *On covariant embeddings of a linear functional equation with respect to an analytic iteration group* International Journal of Bifurcation and Chaos, 13 No. 7: 1853–1875, 2003.

Page 2 of 22

[2] H.F. and L. Reich: *On covariant embeddings of a linear functional equation with respect to an analytic iteration group in some non-generic cases*, Aequationes Math., 68, 60–87, 2004.

Qui

Bibliography

The first and second cocycle equation appeared while studying covariant embeddings of a linear functional equation with respect to an analytic iteration group. Cf.

[1] H.F. and L. Reich: On covariant embeddings of a linear functional equation with respect to an analytic iteration group International Journal of Bifurcation and Chaos, 13 No. 7: 1853–1875, 2003.

[2] H.F. and L. Reich: On covariant embeddings of a linear functional equation with respect to an analytic iteration group in some non-generic *cases*, Aequationes Math., 68, 60–87, 2004.

The regularity conditions were omitted in

[3] H.F. and L. Reich: On the general solution of the system of cocycle equations without regularity conditions, Aequationes Math., 68, 200-229, 2004.

Formal functional equations for iteration groups of type I. Cf.

[4] H.F. and L. Reich: *The formal translation equation and formal cocycle equations for iteration groups of type I*, Aequationes Math., 76: 54–91, 2008.

Formal functional equations for iteration groups of type I. Cf.

[4] H.F. and L. Reich: *The formal translation equation and formal cocycle equations for iteration groups of type I*, Aequationes Math., 76: 54–91, 2008.

The formal translation equation for iteration groups of type II. Cf.

[5] H.F. and L. Reich: *The formal translation equation for iteration groups of type II*, Aequationes Math., 79: 111–156, 2010.

Page 3 of 22

Formal functional equations for iteration groups of type I. Cf.

[4] H.F. and L. Reich: *The formal translation equation and formal cocycle equations for iteration groups of type I*, Aequationes Math., 76: 54–91, 2008.

The formal translation equation for iteration groups of type II. Cf.

[5] H.F. and L. Reich: *The formal translation equation for iteration groups of type II*, Aequationes Math., 79: 111–156, 2010.

The formal first cocycle equation for iteration groups of type II. Cf.

[6] H.F. and L. Reich: *On the formal first cocycle equation for iteration groups of type II*, to appear in the Proceedings of ECIT 2010.

The translation equation

Translation equation

F(s+t,x) = F(s,F(t,x)),	$s,t\in\mathbb{C}$.	(T)
-------------------------	----------------------	-----

Page 4 of 22

Page 4 of 22

The translation equation

Translation equation

 $F(s+t,x) = F(s,F(t,x)), \qquad s,t \in \mathbb{C}.$

(T)

We study solutions

$$F(s,x) = \sum_{n \ge 1} c_n(s) x^n \in \mathbb{C} \llbracket x \rrbracket$$

of (T) in the ring of formal power series over \mathbb{C} where $c_n: \mathbb{C} \to \mathbb{C}$, $n \ge 1$, $c_1(s) \ne 0$, $s \in \mathbb{C}$.

Solutions of (T) are called *iteration groups*.

(T) implies $c_1(s+t) = c_1(s)c_1(t)$, $s, t \in \mathbb{C}$, whence c_1 is an exponential function.

Iteration groups of type I and II

Type I

If $c_1 \neq 1$, then F(s,x) is of type I. Then $c_n(s) = P_n(c_1(s)), s \in \mathbb{C}, P_n(y) \in \mathbb{C}[y], n \ge 1$.

Type II

If $c_1 = 1$ and if $F(s, x) \neq x$, then F(s, x) is of type II. There exists an integer $k \ge 2$ so that

$$F(s,x) = x + c_k(s)x^k + \sum_{n>k} c_n(s)x^n$$

where $c_k \neq 0$ is additive, and $c_n(s) = P_n(c_k(s)), s \in \mathbb{C}, P_n(y) \in \mathbb{C}[y], n \ge k$.

UNI GRAZ

The cocycle equations

Page 6 of 22

for

In connection with the problem of a covariant embedding of the linear functional equation $\varphi(p(x)) = a(x)\varphi(x) + b(x)$ with respect to an iteration group $(F(s,x))_{s\in\mathbb{C}}$ we have to solve the two cocycle equations

$$\alpha(s+t,x) = \alpha(s,x)\alpha(t,F(s,x)), \qquad s,t \in \mathbb{C},$$
(Co1)

$$\beta(s+t,x) = \beta(s,x)\alpha(t,F(s,x)) + \beta(t,F(s,x)), \qquad s,t \in \mathbb{C}, \quad (Co2)$$

under the boundary conditions

$$\alpha(0,x) = 1, \qquad \beta(0,x) = 0,$$
 (B1)

$$\alpha(s,x) = \sum_{n\geq 0} \alpha_n(s)x^n, \qquad \beta(s,x) = \sum_{n\geq 0} \beta_n(s)x^n.$$

ome Page

UNI

If *a* is a nontrivial additive function, (or if *e* is a nontrivial exponential function) and if a polynomial relation P(a(s), a(t)) = 0 (or P(e(s), e(t)) = 0) holds true for all $s, t \in \mathbb{C}$, then P = 0.

ome Page

Page 7 of 22

If *a* is a nontrivial additive function, (or if *e* is a nontrivial exponential function) and if a polynomial relation P(a(s), a(t)) = 0 (or P(e(s), e(t)) = 0) holds true for all $s, t \in \mathbb{C}$, then P = 0.

This observations allows to study formal equations by replacing a(s) and a(t) (or e(s) and e(t)) by indeterminates y and z.

ome Page

If *a* is a nontrivial additive function, (or if *e* is a nontrivial exponential function) and if a polynomial relation P(a(s), a(t)) = 0 (or P(e(s), e(t)) = 0) holds true for all $s, t \in \mathbb{C}$, then P = 0.

This observations allows to study formal equations by replacing a(s) and a(t) (or e(s) and e(t)) by indeterminates y and z.

In $\mathbb{C}[y]$ we have the formal derivation with respect to *y*.

iome rage

If *a* is a nontrivial additive function, (or if *e* is a nontrivial exponential function) and if a polynomial relation P(a(s), a(t)) = 0 (or P(e(s), e(t)) = 0) holds true for all $s, t \in \mathbb{C}$, then P = 0.

This observations allows to study formal equations by replacing a(s) and a(t) (or e(s) and e(t)) by indeterminates y and z.

In $\mathbb{C}[y]$ we have the formal derivation with respect to *y*.

In $(\mathbb{C}[y])[[x]]$ we have the formal derivation with respect to *x*.

If *a* is a nontrivial additive function, (or if *e* is a nontrivial exponential function) and if a polynomial relation P(a(s), a(t)) = 0 (or P(e(s), e(t)) = 0) holds true for all $s, t \in \mathbb{C}$, then P = 0.

This observations allows to study formal equations by replacing a(s) and a(t) (or e(s) and e(t)) by indeterminates y and z.

In $\mathbb{C}[y]$ we have the formal derivation with respect to *y*.

In $(\mathbb{C}[y])[[x]]$ we have the formal derivation with respect to *x*.

Moreover the mixed chain rule is valid for formal derivations.

If *a* is a nontrivial additive function, (or if *e* is a nontrivial exponential function) and if a polynomial relation P(a(s), a(t)) = 0 (or P(e(s), e(t)) = 0) holds true for all $s, t \in \mathbb{C}$, then P = 0.

This observations allows to study formal equations by replacing a(s) and a(t) (or e(s) and e(t)) by indeterminates y and z.

In $\mathbb{C}[y]$ we have the formal derivation with respect to *y*.

In $(\mathbb{C}[y])[[x]]$ we have the formal derivation with respect to *x*.

Moreover the mixed chain rule is valid for formal derivations.

Differentiation is now a purely algebraic process!

The formal translation equation

Formal translation equation in $(\mathbb{C}[y,z])[[x]]$ for iteration groups of type II

$$G(y+z,x) = G(y,G(z,x))$$
 (T_{formal})

$$G(y,x) = x + yx^k + \sum_{n>k} P_n(y)x^n, \quad P_n(y) \in \mathbb{C}[y], \quad n > k,$$

$$G(0,x) = x. (B)$$

Page **8** of **22**

The formal translation equation

Formal translation equation in $(\mathbb{C}[y,z])[[x]]$ for iteration groups of type II

$$G(y+z,x) = G(y,G(z,x))$$
 (T_{formal})

$$G(y,x) = x + yx^k + \sum_{n>k} P_n(y)x^n, \quad P_n(y) \in \mathbb{C}[y], \quad n > k,$$

$$G(0,x) = x. (B$$

Page 8 of 22

F # **O**

Theorem. Let $c_k \neq 0$ be an additive function. Then $F(s,x) = x + c_k(s)x^k + \sum_{n>k} P_n(c_k(s))x^n$ is a solution of (T) if and only if $G(y,x) = x + yx^k + \sum_{n>k} P_n(y)x^n$ is a solution of (T_{formal}) and (B).

Page 8 of 22

The formal translation equation

Formal translation equation in $(\mathbb{C}[y,z])[[x]]$ for iteration groups of type II

$$G(y+z,x) = G(y,G(z,x))$$
 (T_{formal})

$$G(y,x) = x + yx^k + \sum_{n>k} P_n(y)x^n, \quad P_n(y) \in \mathbb{C}[y], \quad n>k,$$

$$G(0,x) = x. (B$$

Theorem. Let $c_k \neq 0$ be an additive function. Then $F(s,x) = x + c_k(s)x^k + \sum_{n>k} P_n(c_k(s))x^n$ is a solution of (T) if and only if $G(y,x) = x + yx^k + \sum_{n>k} P_n(y)x^n$ is a solution of (T_{formal}) and (B).

Theorem. For any formal generator $H(x) = x^k + \sum_{n>k} h_n x^n$ there exists exactly one solution G(y,x) of (T_{formal}) and (B) so that $\frac{\partial}{\partial y}G(y,x)|_{y=0} = H(x)$.

The first cocycle equation

Contents

Page 9 of 22

For each generator $K(x) = \sum_{n \ge 1} \kappa_n x^n$ and each generalized exponential function α_0 there exists exactly one solution α of (Co1) which satisfies $\alpha(0, x) = 1$. It is given by

$$\alpha(s,x) = \alpha_0(s) \frac{E(G(c_k(s),x))}{E(x)} \underbrace{\prod_{j=1}^{k-1} \exp\left(\kappa_j \int [G(\sigma,x)]^j d\sigma|_{\sigma=c_k(s)}\right)}_{=:P(s,x)},$$

where $E(x) = \exp(\tilde{E}(x))$ and $\tilde{E}(x) = \frac{\sum_{n \ge k} \kappa_n x^n}{H(x)}$, and G(U, x) is a solution of ($\mathsf{T}_{\mathsf{formal}}$) with generator H(x) and $c_k \ne 0$ is additive. Conversely, each solution of (Co1) can be obtained in this form. P(s, x) satisfies (Co1) and P(0, x) = 1.

Page 10 of 22

The second cocycle equation

This representation of α motivates to study the series

$$\Delta(s,x) := \frac{\beta(s,x)}{E(x)\alpha(s,x)} = \frac{\beta(s,x)}{\alpha_0(s)E(G(c_k(s,x)))P(s,x)}$$

instead of β .

The second cocycle equation

This representation of α motivates to study the series

$$\Delta(s,x) := \frac{\beta(s,x)}{E(x)\alpha(s,x)} = \frac{\beta(s,x)}{\alpha_0(s)E(G(c_k(s,x)))P(s,x)}$$

instead of β .

Then β satisfies (Co2) and (B1) if and only if $\Delta(s,x) = \sum_{n \ge 0} \Delta_n(s) x^n$ satisfies

$$\Delta(s+t,x) = \Delta(s,x) + \alpha_0(s)^{-1}P(s,x)^{-1}\Delta(t,G(c_k(s),x))$$
(Co2')

and $\Delta(0, x) = 0$.

The inverse $P(s,x)^{-1}$ is a polynomial in $c_k(s)$ and we indicate it as $\tilde{P}(c_k(s),x)$.

Quit

Page 10 of 22

We study different cases:

 $\alpha_0 \neq 1$,

The formal second cocycle equation

We study different cases:	
$lpha_0 eq 1$,	
$\alpha_0 = 1$ and $\tilde{P}(c_k(s), x) = 1$,	

Page 11 of 22

We study different cases:

$$egin{aligned} &lpha_0
eq 1, \ &lpha_0 = 1 ext{ and } ilde{P}(c_k(s), x) = 1, \ &lpha_0 = 1 ext{ and } ilde{P}(c_k(s), x) = 1 - \kappa_r x^r + \dots, ext{ where } r < k-1 ext{ and } \kappa_r
eq 0, \ &lpha_0 = 1 ext{ and } ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots ext{ and } \kappa_{k-1}
ot\in \mathbb{Z}_{\geq 0}, \end{aligned}$$

Page 11 of 22

UNI GRAZ

We study different cases:

UNI GRAZ

Page 11 of 22

$$lpha_0 \neq 1,$$

 $lpha_0 = 1 ext{ and } ilde{P}(c_k(s), x) = 1,$
 $lpha_0 = 1 ext{ and } ilde{P}(c_k(s), x) = 1 - \kappa_r x^r + \dots, ext{ where } r < k - 1 ext{ and } \kappa_r \neq 0,$
 $lpha_0 = 1 ext{ and } ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots ext{ and } \kappa_{k-1} \notin \mathbb{Z}_{\geq 0},$
 $lpha_0 = 1 ext{ and } ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots ext{ and } \kappa_{k-1} \in \mathbb{Z}_{>0}.$

We study different cases:

$$\begin{aligned} &\alpha_0 \neq 1, \\ &\alpha_0 = 1 \text{ and } \tilde{P}(c_k(s), x) = 1, \\ &\alpha_0 = 1 \text{ and } \tilde{P}(c_k(s), x) = 1 - \kappa_r x^r + \dots, \text{ where } r < k - 1 \text{ and } \kappa_r \neq 0, \\ &\alpha_0 = 1 \text{ and } \tilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \text{ and } \kappa_{k-1} \notin \mathbb{Z}_{\geq 0}, \\ &\alpha_0 = 1 \text{ and } \tilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \text{ and } \kappa_{k-1} \in \mathbb{Z}_{>0}. \end{aligned}$$

In all situations $\Delta_n(s)$ is a polynomial in $c_k(s)$.

Page 11 of 22

UNI GRAZ

We study different cases:

$$egin{aligned} &lpha_0
eq 1, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_r x^r + \dots, \ ext{where} \ r < k - 1 \ ext{and} \ \kappa_r
eq 0, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \ ext{and} \ \kappa_{k-1}
otin \mathbb{Z}_{\geq 0}, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \ ext{and} \ \kappa_{k-1}
otin \mathbb{Z}_{\geq 0}. \end{aligned}$$

In all situations $\Delta_n(s)$ is a polynomial in $c_k(s)$. In some cases also a polynomial of degree 1 in $\alpha_0^{-1}(s)$

Page 11 of 22

UŅ

We study different cases:

UNI

Page 11 of 22

$$egin{aligned} &lpha_0
eq 1, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_r x^r + \dots, \ ext{where} \ r < k - 1 \ ext{and} \ \kappa_r
eq 0, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \ ext{and} \ \kappa_{k-1}
otin \mathbb{Z}_{\geq 0}, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \ ext{and} \ \kappa_{k-1}
otin \mathbb{Z}_{\geq 0}. \end{aligned}$$

In all situations $\Delta_n(s)$ is a polynomial in $c_k(s)$. In some cases also a polynomial of degree 1 in $\alpha_0^{-1}(s)$ or a polynomial of degree 1 in an arbitrary additive function A(s).

We study different cases:

$$egin{aligned} &lpha_0
eq 1, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_r x^r + \dots, \ ext{where} \ r < k - 1 \ ext{and} \ \kappa_r
eq 0, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \ ext{and} \ \kappa_{k-1}
ot\in \mathbb{Z}_{\geq 0}, \ &lpha_0 = 1 \ ext{and} \ ilde{P}(c_k(s), x) = 1 - \kappa_{k-1} x^{k-1} + \dots \ ext{and} \ \kappa_{k-1} \in \mathbb{Z}_{\geq 0}. \end{aligned}$$

Page 11 of 22

In all situations $\Delta_n(s)$ is a polynomial in $c_k(s)$. In some cases also a polynomial of degree 1 in $\alpha_0^{-1}(s)$ or a polynomial of degree 1 in an arbitrary additive function A(s). Since (Co2') holds for all $s, t \in \mathbb{C}$ we can replace the values $c_k(s), c_k(t)$ by indeterminates $U, V, \alpha_0^{-1}(s), \alpha_0^{-1}(t)$ by S, T and A(s), A(t) by σ, τ . This yields the formal equation

$R(ST, U+V, \sigma+\tau, x) = R(S, U, \sigma, x) + S^{\lambda} \tilde{P}(U, x) R(T, V, \tau, G(U, x))$ (Co2_{formal})

where $\lambda \in \{0,1\}$. The series $\tilde{P}(U,x)$ and G(U,x) are solutions of the formal version of (Co1) respectively of (T_{formal}).

We study solutions of $(Co2_{formal})$ satisfying the boundary condition

$$R(1,0,0,x) = 0.$$
 (B)

Page 12 of 22

Page 13 of 22

Three differential equations derived from (Co2_{formal})

Differentiation of (Co2_{formal}) with respect to T and setting T = 1, V = 0, and $\tau = 0$ yields

$$S\frac{\partial}{\partial S}R(S,U,\sigma,x) = S^{\lambda}\tilde{P}(U,x)N_{S}(G(U,x)), \tag{D1}$$

where
$$N_S(x) := \frac{\partial}{\partial S} R(S, 0, 0, x)|_{S=1}$$

Three differential equations derived from (Co2_{formal})

Differentiation of (Co2_{formal}) with respect to *T* and setting T = 1, V = 0, and $\tau = 0$ yields

$$S\frac{\partial}{\partial S}R(S,U,\sigma,x) = S^{\lambda}\tilde{P}(U,x)N_{S}(G(U,x)), \tag{D1}$$

where
$$N_S(x) := rac{\partial}{\partial S} R(S,0,0,x)|_{S=1}.$$

Similarly by differentiating with respect to V or τ we obtain

$$\frac{\partial}{\partial U}R(S,U,\sigma,x) = S^{\lambda}\tilde{P}(U,x)N_U(G(U,x)), \tag{D2}$$

and

$$\frac{\partial}{\partial \sigma} R(S, U, \sigma, x) = S^{\lambda} \tilde{P}(U, x) N_{\sigma}(G(U, x)), \tag{D3}$$

where $N_U(x) := \frac{\partial}{\partial U} R(1, U, 0, x)|_{U=0}$, and $N_{\sigma}(x) := \frac{\partial}{\partial \sigma} R(1, 0, \sigma, x)|_{\sigma=0}$.

Quit

Page 13 of 22

Studying (*)

Using the formal part of the theory of Briot–Bouquet equations we get:

If $\tilde{P}(U,x) = 1$, then $N_{\sigma}(x) \in \mathbb{C}$ (constant).

Studying (*)

Using the formal part of the theory of Briot–Bouquet equations we get:

If $\tilde{P}(U,x) = 1$, then $N_{\sigma}(x) \in \mathbb{C}$ (constant).

If $\tilde{P}(U,x) = 1 - \kappa_r x^r + \dots$, where r < k-1 and $\kappa_r \neq 0$, or r = k-1 and $\kappa_{k-1} \notin \mathbb{Z}_{\geq 0}$, then $N_{\sigma}(x) = 0$.

Studying (*)

Using the formal part of the theory of Briot–Bouquet equations we get: If $\tilde{P}(U,x) = 1$, then $N_{\sigma}(x) \in \mathbb{C}$ (constant). If $\tilde{P}(U,x) = 1 - \kappa_r x^r + \ldots$, where r < k-1 and $\kappa_r \neq 0$, or r = k-1 and $\kappa_{k-1} \notin \mathbb{Z}_{\geq 0}$, then $N_{\sigma}(x) = 0$. If $\tilde{P}(U,x) = 1 - \kappa_{k-1}x^{k-1} + \dots$ and $\kappa_{k-1} = n_1 \in \mathbb{Z}_{>0}$, then $N_{\sigma}(x) = \sum N_{\sigma,j} x^{j}$ $i > n_1$

where N_{σ,n_1} is not determined, $N_{\sigma,j}$, $j > n_1$, uniquely determined by (*) and N_{σ,n_1} .

Qui

Page 16 of 22

Comparing the solutions for $\lambda=0$ with the solutions for $\lambda=1$ we analyze when we can write

$$\int \tilde{P}(U,x)N_U(G(U,x))dU = F(G(U,x)) \tag{0}$$

Page 17 of 22

for some $F(x) = \sum_{n\geq 0} f_n x^n \in \mathbb{C}[[x]].$

If $\tilde{P}(U,x) = 1$, then (\circ) is true whenever $\operatorname{ord} N_U \ge k$. If so, then f_0 is arbitrary in \mathbb{C} .

Comparing the solutions for $\lambda=0$ with the solutions for $\lambda=1$ we analyze when we can write

$$\int \tilde{P}(U,x)N_U(G(U,x))dU = F(G(U,x)) \tag{0}$$

for some $F(x) = \sum_{n \ge 0} f_n x^n \in \mathbb{C}[[x]].$

If $\tilde{P}(U,x) = 1$, then (\circ) is true whenever $\operatorname{ord} N_U \ge k$. If so, then f_0 is arbitrary in \mathbb{C} .

If $\tilde{P}(U,x) = 1 - \kappa_r x^r + ...$, where r < k-1 and $\kappa_r \neq 0$, or r = k-1 and $\kappa_{k-1} \notin \mathbb{Z}_{\geq 0}$, then (\circ) is true whenever $\operatorname{ord} N_U \geq r$. If so, then *F* is uniquely determined.

Qui

Page 17 of 22

Comparing the solutions for $\lambda=0$ with the solutions for $\lambda=1$ we analyze when we can write

$$\int \tilde{P}(U,x)N_U(G(U,x))dU = F(G(U,x)) \tag{0}$$

for some $F(x) = \sum_{n \ge 0} f_n x^n \in \mathbb{C}[[x]].$

If $\tilde{P}(U,x) = 1$, then (\circ) is true whenever $\operatorname{ord} N_U \ge k$. If so, then f_0 is arbitrary in \mathbb{C} .

If $\tilde{P}(U,x) = 1 - \kappa_r x^r + ...$, where r < k-1 and $\kappa_r \neq 0$, or r = k-1 and $\kappa_{k-1} \notin \mathbb{Z}_{\geq 0}$, then (\circ) is true whenever $\operatorname{ord} N_U \geq r$. If so, then *F* is uniquely determined.

If $\tilde{P}(U,x) = 1 - \kappa_{k-1}x^{k-1} + ...$ and $\kappa_{k-1} = n_1 \in \mathbb{Z}_{>0}$, then (\circ) is true whenever $\operatorname{ord} N_U \ge k - 1$ and N_{U,n_1+k-1} satisfies a polynomial relation in $N_{U,j}$ for $k \le j < n_1 + k - 1$, which is also a polynomial relation in f_j for $1 \le j < n_1$. If so, then f_{n_1} is arbitrary, f_0, \ldots, f_{n_1-1} are uniquely determined and f_j , $j > n_1$, are uniquely determined depending on f_{n_1} .

Reordering the summands

Now we consider the solutions $R(S, U\sigma, x)$ of (Co2_{formal}) as elements of $(\mathbb{C}[S, \sigma])[[U, x]]$, and rewrite them in the form

$$R(S, U\sigma, x) = \sum_{n \ge 0} Q_n(S, \sigma, x) U^n$$

Page 18 of 22

with $Q_n(S, \sigma, x) \in (\mathbb{C}[S, \sigma])[[x]].$

In this situation we study another system of differential equations:

Three (partial) differential equations from (Co2_{formal})

We determine another system of differential equations by differentiating (Co2_{formal}) with respect to S (U and σ) and setting S = 1, U = 0, and $\sigma = 0$: $T\frac{\partial}{\partial T}R(T,V,\tau,x) = N_T(x) + \delta_{\lambda,1}R(T,V,\tau,x),$ (PD1) $\frac{\partial}{\partial V}R(T,V,\tau,x) = N_V(x) + (\sum_{i=1}^{k-1} -\kappa_j)R(T,V,\tau,x) + \frac{\partial}{\partial x}R(T,V,\tau,x)H(x),$ (PD2) $\frac{\partial}{\partial \tau} R(T, V, \tau, x) = N_{\tau}(x),$ (PD3)

where N_T , N_V and N_τ are generators.

Page 19 of 22

UN

Integration by Differentiation

Using the reordered series $R(S, U\sigma, x) = \sum_{n \ge 0} Q_n(S, \sigma, x) U^n$, it is easy to solve (PD1), (PD2) (PD3), and (B):

E.g., the main computation is to solve equations of the form

$$n\hat{R}_n(x) = \sum_{j=r}^{k-1} (-\kappa_j) x^j \hat{R}_{n-1}(x) + \hat{R}'_{n-1}(x) H(x), \qquad n \ge 2,$$

Page 20 of 22

where $\hat{R}_{n-1}(x)$ is already computed.

This method yields new representations of solutions of (Co2_{formal}).

Contents

type II Page 21 of 22

On the formal second cocycle equation for iteration groups of Bibliography The translation equation Iteration groups of type I and II The cocycle equations Formal equations The formal translation equation The first cocycle equation The second cocycle equation The formal second cocycle equation Three differential equations derived from (Co2_{formal}) Solutions of (D1), (D2), (D3) and (B) for $\lambda = 1$ Solutions of (D1), (D2), (D3) and (B) for $\lambda = 0$

Reordering the summands Three (partial) differential equations from (Co2_{formal}) Integration by Differentiation

