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The translation equation

Translation equation

F(s+t,x)= F(s,F(t,x)),

s,t € C.
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The translation equation

Translation equation
F(s+t,x) =F(s,F(t,x)), s,t € C. (T)

We study solutions

F(s,x) = Z cu(s)x" € C|lx]

n>1

of (T) in the ring of formal power series over C where ¢,:C — C, n > 1,
Cl<S) #0,s e C.

Solutions of (T) are called iteration groups.

(T) implies ci(s+1) = c1(s)c;(2), s, € C, whence ¢, is an exponential
function.
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Iteration groups of type | and Il

Type |

If c; # 1, then F(s,x) is of type I.
Then c¢,(s) = P,(c1(s)), s € C, P,(y) e Cly],n > 1.

Type Il

If c; =1 and if F(s,x) # x, then F(s,x) is of type Il.
There exists an integer £k > 2 so that

F(s,x) = x+ ci(s)x* + Z cn(s)x",

n>k

where ¢, # 0 is additive,
and c¢,(s) = P,(ck(s)), s € C, P,(y) € Cly], n > k.
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The cocycle equations

In connection with the problem of a covariant embedding of the linear
| functional equation ¢(p(x)) = a(x)@(x) + b(x) with respect to an

 iteration group (F'(s,x))sec We have to solve the two cocycle equations

| ot(s+1,x) = ous,x)a(t,F(s,x)), s,t € C, (Cot)

| B(s+1t,x) = ,B(s,x)oc(t,F(s,x)) +f (t,F(s,x)), s,t € C, (Co2)
|

under the boundary conditions
|

| a(0,x)=1,  B(0,x)=0, (B1)

. for

s, x) =) ot (s)x", B(s,x) =Y Bu(s)x".

| >0 n>0


http://www.uni-graz.at
http://www.uni-graz.at/~fripert/

Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P(a(s),a(t)) =0 (or
P(e(s),e(t)) = 0) holds true for all s,z € C, then P = 0.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential

| function) and if a polynomial relation P (a(s),a(t)) = 0 (or
 P(e(s),e(t)) = 0) holds true for all 5,z € C, then P = 0.

. This observations allows to study formal equations by replacing a(s)

and a(t) (or e(s) and e(t)) by indeterminates y and z.
|
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential

| function) and if a polynomial relation P(a(s),a(r)) = 0 (or
 P(e(s),e(t)) = 0) holds true for all 5,z € C, then P = 0.

. This observations allows to study formal equations by replacing a(s)

and a(t) (or e(s) and e(t)) by indeterminates y and z.
|

| In C[y| we have the formal derivation with respect to y.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P(a(s),a(t)) = 0 (or
P(e(s),e(t)) = 0) holds true for all s,z € C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.

In C[y| we have the formal derivation with respect to y.

In (C[y])[x]] we have the formal derivation with respect to x.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P(a(s),a(t)) = 0 (or
P(e(s),e(t)) = 0) holds true for all s,z € C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.

In C[y| we have the formal derivation with respect to y.
In (C[y])[x]] we have the formal derivation with respect to x.

Moreover the mixed chain rule is valid for formal derivations.
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Formal equations

If a is a nontrivial additive function, (or if e is a nontrivial exponential
function) and if a polynomial relation P(a(s),a(t)) = 0 (or
P(e(s),e(t)) = 0) holds true for all s,z € C, then P = 0.

This observations allows to study formal equations by replacing a(s)
and a(t) (or e(s) and e(t)) by indeterminates y and z.

In C[y| we have the formal derivation with respect to y.
In (C[y])[x]] we have the formal derivation with respect to x.
Moreover the mixed chain rule is valid for formal derivations.

Differentiation is now a purely algebraic process!
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The formal translation equation

| Formal translation equation in (C|y,z])[/x] for iteration groups of type |l

| G(y—l—z,x) — G(y7 G(Z,X)) (Tformal)
|

G(y,x) = x+ yx" + Y P(y)x", P.(y)€Cll, n>k,

| n>k

| G(0,x) = x. (B)
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The formal translation equation

Formal translation equation in (C|y, z])|lx] for iteration groups of type

G(y+2z,x) = G(y,G(z,x)) (Tiorman)
G(y,x) = x4 yx* + ZPn<Y)xn= P.(y) €Cl], n>k,
n>k
G(0,x) = x. (B)

Theorem. Let ¢, ## 0 be an additive function. Then
F(s,x) = x+cp(8)x* + ¥~ Pu(ck(s))x" is a solution of (T) if and only if
G(y,x) = x+yx* + ¥ _ P.(y)x" is a solution of (Tima) and (B).
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The formal translation equation

Formal translation equation in (C|y, z])|lx] for iteration groups of type

G(y+2z,x) = G(y,G(z,x)) (Tiorman)
G(y,x) = x4 yx* + ZPn<Y)xn= P.(y) €Cl], n>k,
n>k
G(0,x) = x. (B)

Theorem. Let ¢, ## 0 be an additive function. Then
F(s,x) = x+cp(8)x* + ¥~ Pu(ck(s))x" is a solution of (T) if and only if
G(y,x) = x+yx* + ¥ _ P.(y)x" is a solution of (Tima) and (B).

Theorem. For any formal generator H(x) = x*+ Y, h,x" there exists
exactly one solution G(y,x) of (Ti,ma) @and (B) so that

2.G(y.x)],—0 = H(x).
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The first cocycle equation

For each generator K(x) =Y - k,x" and each generalized exponential
function oy there exists exactly one solution & of (Co1) which satisfies
o(0,x) = 1. It is given by

a(5.6) = o) g TTexp (1 [ [6(0,0) d e ).

A\ 4
~"

=:P(s,x)

where E(x) = exp(E(x)) and E(x) = Y >k KX

,and G(U,x) is a

solution of (Ti,ma) With generator H(x) and ¢, # 0 is additive.
Conversely, each solution of (Co1) can be obtained in this form.
P(s,x) satisfies (Co1) and P(0,x) = 1.
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The second cocycle equation

| This representation of o motivates to study the series

Bs,x) B(s,x)

CE@als,x)  a(s)E(G(c(s,x)))P(s,x)

' instead of B.
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The second cocycle equation

This representation of o motivates to study the series

Blsx) B(s.)
E@a(s.x)  ao(s)E(G(ex(s,2)P(s.x)

A(s,x) 1=

instead of f3.

Then [ satisfies (Co2) and (B1) if and only if A(s,x) =Y,>0Au(s)x"
satisfies

A(s+1,x) = A(s,x) + 0op(s) ' P(s,x) ' At, G(ck(s),x)) (Co2))

and A(0,x) = 0.

The inverse P(s,x) ! is a polynomial in ci(s) and we indicate it as
P(ck(s),x).
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The formal second cocycle equation

We study different cases:
o # 1,
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The formal second cocycle equation
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We study different cases:
oo # 1,

oo =1 and P(ci(s),x) = 1,
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The formal second cocycle equation

We study different cases:
o # 1,

oo = 1 and P(ci(s),x)

1,
o =1 and P(c(s),x) =1 — kx"+..., where r < k— 1 and k, # 0,
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The formal second cocycle equation

We study different cases:
o # 1,

. 0p=1and P(ci(s),x)

oo = 1 and P(ci(s),x)

1,
l—xkx"+...,wherer <k—1and k, # 0,
1_

| ap=1and P(ci(s),x)
|

Kk_lxk_l +...and K;_ € ZZ(),
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The formal second cocycle equation

We study different cases:

o # 1,
. 09 =1and P(ci(s),x) =1,
oo =1and P(ci(s),x) =1 —xx"+...,where r < k—1and k, # 0,
| Op = 1 and P(Ck(S),X) =1 — Kk_lxk_l + ... and K1 € ZZ(),
0 =1and P(ci(s),x) =1— ke x* ' +... and ki_; € Z~,.
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The formal second cocycle equation

We study different cases:
o # 1,

—Kkx"+...,wherer <k—1and k, # 0,

— Kk_lxk_l +...and K;_1 € Z~y.

(ck(s),x) =1
(ck(s),x) =1
| op =1 and P(Ck(S),X) =1 Kk_lxk_l +...and K_; € ZZ(),
P(cr(s),x) = 1
(
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The formal second cocycle equation

We study different cases:

—Kkx"+...,wherer <k—1and k, # 0,

1
1

= 1—K_x*'+...and x_; & Zi >0,
1 — x4 ...and K_; € Z-o.

. In all situations A, (s) is a polynomial in ¢(s).In some cases also a

| polynomial of degree 1 in ;' (s)
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The formal second cocycle equation

We study different cases:

—Kkx"+...,wherer <k—1and k, # 0,

1
1

= 1—K_x*'+...and x_; & Zi >0,
1 — x4 ...and K_; € Z-o.

. In all situations A, (s) is a polynomial in ¢(s).In some cases also a

| polynomial of degree 1 in ;' (s)or a polynomial of degree 1 in an

arbitrary additive function A(s).
|
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The formal second cocycle equation

We study different cases:

|

l—xkx"+...,wherer <k—1and k, # 0,
=1 Kk_lxk_l +...and K_; Q ZZO=

1 — Kk_lxk_l +...and K;_1 € Z~y.

In all situations A, (s) is a polynomial in ¢,(s).In some cases also a
polynomial of degree 1 in ;' (s)or a polynomial of degree 1 in an
arbitrary additive function A(s).Since (Co2’) holds for all s,z € C we can
replace the values ci(s), ci(¢) by indeterminates U,V, a; ' (s), o ' (¢) by
S,T and A(s),A(t) by o, 1. This yields the formal equation
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CRAZ R(ST, U + ‘/7 o+ T,X) — ]Q(S7 U, G,x) + S;LP(ij)R(Ty V) Tj G(ij))
| (C02formal)

where A € {0,1}. The series P(U,x) and G(U,x) are solutions of the

formal version of (Co1) respectively of (T ma)-

We study solutions of (Co2;,.4) satisfying the boundary condition

R(1,0,0,x) = 0. (B)
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Three differential equations derived from (Co2,,..)

| Differentiation of (CO2iyma) With respectto 7T and setting 7 =1,V =0,

- and 7 = 0 yields

S<R(S,U,0,x) = $*P(U,x)Ns(G(U,x)), (D1)
|

| 0
b

~ Where Ns(x) := 55R(S,0,0,x)|s—1.
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Three differential equations derived from (Co2,,..)

Differentiation of (Co2;,..) With respectto 7" and setting 7 =1,V =0,
and 7 = 0 yields

S 2 R(S.U.0.2) = S B(U.NS(G(U.). 01)

where Ng(x) := %R(S,0,0,xﬂs:l.

Similarly by differentiating with respect to V or T we obtain

%R(s, U,0,x) =S*P(U,x)Ny(G(U,x)), (D2)

and p
S—R(S,U,0,%) = S*P(U,x)Ns(G(U,x)), (D3)

0

where Ny (x) := =5 R(1,U,0,x)|yo, and Ng(x) := 2= R(1,0, 6, x)| oo
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Solutions of (D1), (D2), (D3) and (B) for A =1

R(S,U,0,x) = SP(U,x)Ns(G(U,x)) — Ns(x)
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Solutions of (D1), (D2), (D3) and (B) for A =1

R(S,U,0,x) = SP(U,x)Ns(G(U,x)) — Ng(x)
Relations for the generators Ng, Ny, and Ng.

NG:O

% (P(U,x)NS(G(U,X))) = SP(U,x)Ny(G(U ,x)).
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Solutions of (D1), (D2), (D3) and (B) for A =1

R(S,U,0,x) = SP(U,x)Ns(G(U,x)) — Ng(x)
Relations for the generators Ng, Ny, and Ng.

NGZO
o
dU

Each solution of of (D1), (D2), (D3), and (B) for A = 1 is a solution of
(CO2imal) for A = 1.

(P(U,x)Ns(G(U,x))) = SP(U,x)Ny(G(U,x)).

This representation of the solutions coincides with the representation
found in our previous papers.
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where

Solutions of (D1), (D2), (D3) and (B) for A =0

R(S,U,G,x) = 6Ny (x) + / B(U,x)Ny(G(U, x))dU —c,

o= / P(U,x)NU(G(U,x))dU‘UZO.
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Solutions of (D1), (D2), (D3) and (B) for A =0

R(S,U,0,x) = 0N, (x) + / B(U, )Ny (G(U,x))dU — c,

where
- / P(UNu(G(U x)dU|

Relations for the generators Ng, Ny, and Ng.

Ng=0

Jd -
=7 (P(U,x)Ns(G(U,x))) = 0.
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Solutions of (D1), (D2), (D3) and (B) for A =0

R(S,U,0,x) = 0N, (x) + / B(U, )Ny (G(U,x))dU — c,
where
o= / P(U,x)NU(G(U,x))dU(U:O.

Relations for the generators Ng, Ny, and Ng.

Ng=0

d .
=7 (P(U,x)Ns(G(U,x))) = 0.
Each solution of of (D1), (D2), (D3), and (B) for A = 0 is a solution of

(CO2mal) for A = 0.

(*)
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Studying (x)

cais Using the formal part of the theory of Briot—Bouquet equations we get:

If P(U,x) = 1, then Ns(x) € C (constant).

B
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Studying ()
Using the formal part of the theory of Briot—Bouquet equations we get:
If P(U,x) = 1, then Ny(x) € C (constant).

f P(U,x) =1—Kx"+...,where r <k—1and k., #0, or r=k—1 and
Kr—1 Q ZZ(), then NG(X) = 0.
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Studying ()
Using the formal part of the theory of Briot—Bouquet equations we get:
If P(U,x) = 1, then Ny(x) € C (constant).

f P(U,x) =1—Kx"+...,where r <k—1and k., #0, or r=k—1 and
Kr—1 Q ZZ(), then NG(X) = 0.

f P(U,x) =1—x_1x*14...and K_1 = n; € Z~, then

NG(X) = Z Ngjjxj

j=ny

where N ,, IS not determined, Ny ;, j > n1, uniquely determined by (x)
and Ng ;.


http://www.uni-graz.at
http://www.uni-graz.at/~fripert/

Comparing the solutions for A = 0 with the solutions for A =1 we
analyze when we can write

| / B(U, x)Ny(G(U,x))dU = F(G(U,x))
|

for some F(x) =Y >0 fux" € Clx].
|

If P(U,x) = 1, then (o) is true whenever ord Ny > k. If so, then fj is
" arbitrary in C.
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Comparing the solutions for A = 0 with the solutions for A =1 we
analyze when we can write

/ B(U, )Ny (G(U,x))dU = F(G(U,x)) (o)

for some F(x) =Y >0 fux" € Clx].

If P(U,x) = 1, then (o) is true whenever ord Ny > k. If so, then fj is
arbitrary in C.

f P(U,x) =1—Kx"+...,where r <k—1and k. #0, or r =k — 1 and
Ki_1 & Z>, then (o) is true whenever ord Ny > r. If so, then F is
uniquely determined.
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Comparing the solutions for A = 0 with the solutions for A =1 we
analyze when we can write

/ B(U, )Ny (G(U,x))dU = F(G(U,x)) (o)

for some F(x) =Y >0 fux" € Clx].

If P(U,x) = 1, then (o) is true whenever ord Ny > k. If so, then fj is
arbitrary in C.

f P(U,x)=1—Kx"+...,where r <k—1and k., #0, or r=k—1 and
Ki_1 & Z>, then (o) is true whenever ord Ny > r. If so, then F is
uniquely determined.

f P(U,x) =1—x_1x*1+...and k;_| = n; € Z-, then (o) is true
whenever ord Ny > k—1 and Ny ,, 1«1 satisfies a polynomial relation in
Ny jfork < j <mn;+k—1, which is also a polynomial relation in f; for

1 < j<mny. lf so, then f,, is arbitrary, fo,..., f,,—1 are uniquely
determined and f;, j > nj, are uniquely determined depending on f,..
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Reordering the summands

Now we consider the solutions R(S,Uo,x) of (Co2,ma) as elements of
(C[S,o])|U,x]|, and rewrite them in the form

R(S,Uc,x) =) 0,(S,0,x)U"

with Q0,,(S,0,x) € (C|S, o])[x]-

In this situation we study another system of differential equations:
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Three (partial) differential equations from (CoZ2,..)

We determine another system of differential equations by differentiating
(C02ima) With respect to S (U and o) and setting S =1, U = 0, and
oc=0:

T%R(T,V,T,x) = Nr(x)+ 0, 1R(T,V,7,x), (PD1)

%, ] %,
WR(T, V,7,x) = Ny(x) + (]Z:r —Kk;)R(T,V,7,x) + a—xR(T, V,7,x)H (x),
(PD2)
%R(T, V,T,x) = N¢(x), (PD3)

where Ny, Ny and N; are generators.
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Integration by Differentiation

Using the reordered series R(S,U0G,x) =Y ,590n(S,0,x)U", it is easy

| to solve (PD1), (PD2) (PD3), and (B):

| E.g., the main computation is to solve equations of the form

| wR,(x) = ¥ (— )R () + R, (H(),  n>2

j=r

| where R,_(x) is already computed.

| This method yields new representations of solutions of (Co2,a1)-
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