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The equation

| f (;ﬁﬁ +SE%) rf (% (%xj%xj>>

14

| :((d21>_<j:11>+1>]21f(xj) (1)

. [:X =Y, X, Y Banach spaces (IK-vector spaces, K of characteristic 0)

re Q, ¢,d integers satisfying 1 < ¢ <d/2,
| X1y...,X4 €KX,

| (‘;f) is the set of all /-subsets of d = {1,...,d}.
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In [1] it is shown that if f is an odd solution, then f is additive. Moreover
the Hyers—Ulam stability of this equation is studied. Actually, the
equation itself is not so interesting for us as the applied method (based

| on a Theorem of L. Székelyhidi [4, Theorem 9.5, p. 73]) and the

. obtained results. We also investigate the situation r ¢ Q.
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In [1] it is shown that if f is an odd solution, then f is additive. Moreover
the Hyers—Ulam stability of this equation is studied. Actually, the
equation itself is not so interesting for us as the applied method (based
on a Theorem of L. Székelyhidi [4, Theorem 9.5, p. 73]) and the
obtained results. We also investigate the situation r ¢ Q.

If we omit f in (1) we have

which is an identity in X.
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Theorem 1. Let X be a K-vector space.

1. Considera; ; €K, r, € K¥, i€, j € J, I and J finite. Then

ZriZ%aijjxj:O, \V/XjEX, Vjej,

icl jeJ'i

If and only if
| Y a;=0 Vjel.

il
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Theorem 1. Let X be a K-vector space.

1. Considera; ; €K, r, € K¥, i€, j € J, I and J finite. Then

Zrizrlaijjxj:(), \V/XjEX, VjEJ,

icl jeJ'i

If and only if

| Y a;=0 Vjel.

il

2. It Y is also a K-vector space, r; € Q" and } ;c;a; i =0forall j € J,

then any additive f: X — Y satisfies

1
Z;ai,]—xj> = ().

jeg T

| Lo

el
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Value of f(0)

Substituting x; = --- =x;, = 01in (1) we obtain
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Substituting x; =

Value of f(0)

-+ =x4=01in (1) we obtain

(- () (7))o

1ty (O

d—1

)

+1)d

+(7)

(1
)
(

. Theorem 2. Let f be a solution of (1).

, then £(0) =

d, then f+vy, y €Y, is a solution of (1).

0.
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Thus

(4
(-

f(x) +erf(

+caf(

| Substitute x; = x, x, =y, and x3 =

()

1

N | =N |-

)i

Solutions with f(0) =0

=x,; = 01n (1), then we obtain

+( sl

st e+ (47 )
(%)= (o) +1) v

() +eaf (o (x

(~x =) +esf () =

) esf (- ()
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Theorem by L.Szekelyhidi

Theorem [4, Theorem 9.5, p. 73] Let X,Y be K-vector spaces,
¢;, Yi: X — X homomorphisms such that ¢;(X) C y;(X) for
1 <i<n+1.lItf, fi,..., fur1: X — Y satisfy

n+1

fx)+ Z, filei(x)+wi(y)) =0, xyeX,

then f is a generalized polynomial of degree at most n.
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Theorem by L.Szekelyhidi

Theorem [4, Theorem 9.5, p. 73] Let X,Y be K-vector spaces,
¢;, Yi: X — X homomorphisms such that ¢;(X) C y;(X) for
1<i<n+1.0f fi,..., fre1: X — Y satisty

n+1
f)+ ) fileix) +wi(y) =0,  x,y€X,
i=1
then f is a generalized polynomial of degree at most n.

Corollary 1. The solutions of (2) are generalized polynomials of degree
at most 4.

The solutions f of (1) with f(0) = 0 are generalized polynomials of
degree at most 4.
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Generalized polynomials

A mapping f:X — Y is called a generalized polynomial homogeneous

| of degree k (k € Ny), if there exists some symmetric, k-additive mapping

- F:X*—7Y sothat f(x) = F(x,...,x), x € X. (This F is additive or

Q-linear in each component.) The set of all generalized polynomials
| homogeneous of degree k is indicated by 92°™(X,Y).

- Ifk=0,1,2, fis constant, additive, quadratic, respectively.
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Generalized polynomials

A mapping f:X — Y is called a generalized polynomial homogeneous
of degree k (k € Ny), if there exists some symmetric, k-additive mapping
F:X* — Y sothat f(x) = F(x,...,x), x € X. (This F is additive or
Q-linear in each component.) The set of all generalized polynomials
homogeneous of degree k is indicated by 92°™(X,Y).

It k=0,1,2, f is constant, additive, quadratic, respectively.

A mapping f: X — Y is called a generalized polynomial of degree at
most n (n € Ny) if f = fo+ fi+ -+ fu, where f; € 22M°"(X,Y),

0 <k <n. The set of all generalized polynomials of degree at most n is
the direct sum @j_, 2 ™(X,Y).
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Generalized polynomials

A mapping f:X — Y is called a generalized polynomial homogeneous
of degree k (k € Ny), if there exists some symmetric, k-additive mapping
F:X* — Y sothat f(x) = F(x,...,x), x € X. (This F is additive or
Q-linear in each component.) The set of all generalized polynomials
homogeneous of degree k is indicated by 92°™(X,Y).

It k=0,1,2, f is constant, additive, quadratic, respectively.

A mapping f: X — Y is called a generalized polynomial of degree at
most n (n € Ny) if f = fo+ fi+ -+ fu, where f; € 22M°"(X,Y),

0 <k <n. The set of all generalized polynomials of degree at most n is
the direct sum @j_, 2 ™(X,Y).

Exactly the same method was described by A. Gilanyi in his talk

“Computer assisted methods for functional equations” during the last
ISFE. Cf. also [2].
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Solutions of (2)

f=fo+ i+t fs+fic®i, ZPhom(X | Y) is a solution of (2) if and
only if f; is a solution of (2) for 0 < k < 4.
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Solutions of (2)

f=fotrfith+it+fic®i_oPr"(X,Y) is a solution of (2) if and
only if f; is a solution of (2) for 0 < k < 4.

Since we assume f(0) = 0 we have f; =0.
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Solutions of (2)

|
f=fotrfith+it+fic®i_oPr"(X,Y) is a solution of (2) if and
| only if f; is a solution of (2) for 0 < k < 4.

| Since we assume f(0) = 0 we have fy = 0.

" From [1] we know that each f; is a solution of (1) and no f5 #0is a
| solution of (1).
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Solutions of (2)

|
f=fotrfith+it+fic®i_oPr"(X,Y) is a solution of (2) if and

| only if f; is a solution of (2) for 0 < k < 4.

| Since we assume f(0) = 0 we have fy = 0.

From [1] we know that each f; is a solution of (1) and no f5 #0is a
| solution of (1).

| We have to check whether there exist generalized polynomials

homogeneous of degree 2 or 4 solving (2).
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Quadratic solutions of (2)

|
If f(x) = fo(x) = F(x,x) is a quadratic function, then (2) can be

replaced by

() () () oes
8 o R s R e

There exists a non-zero solution f if and only if both square brackets are
equal to O.

_|_
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1+ (“%)=2(9-7) + (925) =0ifand only if 1+ (9) =4(9_7). Under the

v assumption 2 < ¢ < d/2 this is equivalentto d = 6 and ¢ = 2.

GRAZ

 fd=6and /=2 and

' () -Gz +1
| 1+ (%)

I both square brackets are 0.
| |
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1+ (“%)=2(9-7) + (925) =0ifand only if 1+ (9) =4(9_7). Under the

assumption 2 < ¢ < d/2 this is equivalentto d = 6 and ¢ = 2.

Ifd =6 and [ = 2 and

both square brackets are 0.

Theorem 3. If r =8/3, d = 6, and ¢ = 2 any quadratic function is a
solution of (1).

Otherwise there are no non-zero quadratic solutions of (1).
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Solutions of (2) homogeneous of degree 4

If f x) = fa(x) = F(x,x,x,x) is a generalized polynomial of degree 4,
en (2) can be replaced by

[ () -((“71)- (1) 1) v+
(14 () Fion

A (1 (6
R I oy [

0.

_|_
_|_

| Since the coefficient of F(x,x,y,y) is different from 0, f = 0.



http://www.uni-graz.at
http://http://imsc.uni-graz.at/fripertinger/

Solutions of (2) homogeneous of degree 4

| If f x) = fa(x) = F(x,x,x,x) is a generalized polynomial of degree 4,

 then (2) can be replaced by

[ () -((“71)- (1) 1) v+

-
() e

_|_
_|_

A (1 (6
R I oy [
= 0.

| Since the coefficient of F(x,x,y,y) is different from 0, f = 0.

Theorem 4. There are no nonzero generalized polynomials of degree 4

solving (1).
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Rational r

Corollary 2.

The solutions of (1) are of the form
f=fotfitftfi+fa€ Biog XY,

d—1\_(d—1
If r = () (ﬂ;l)ﬂ)d, then any f, is a solution of (1), otherwise fy = 0.

(1+(%))

Any f; is a solution of (1).

Ifd =6,¢=2,and r=8/3, then any f; is a solution of (1), otherwise
fr=0.

There are no non-zero solutions of (1) which are generalized
polynomials of degree 3 or 4.
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Non-rational r

Again by Székelyhidi’'s Theorem the solutions of (1) are of the form
f=htfith+fi+fie@iooZ"X,Y).

Theorem 5.

fo, f3, f4 are solutions of (1) ifand only if fo =0, f3=0, f4 =0,
respectively.

f1is a solution of (1) if and only if rf1(x) = fi(rx), x € X.

If d =6 and ¢ = 2, any f, satisfying f>(rx) = %rfz(x), xeX,isa
solution. Otherwise f, = 0 is the only quadratic solution of (1).
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Additive functions with f(rx) = rf(x)

Two elements a, A € K are called conjugate if either, they both have the

| same minimal polynomial over Q, or they both are transcendental
 over Q.

. A special case of [3, Theorem 4.12.1] Is

| Theorem. If a and A are conjugate, then there exists an additive

| o: K — K, o # 0, so that o(ax) = Aax(x), x € K.

| Corollary 3. There exist non-zero additive solutions f of (1) with

f(rx) =rf(x), x € X, when r is not rational.
|
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Quadratic functions with f(rx) = crf(x), c € Q*

Corollary 4. If r is transcendental over QQ, then there exist quadratic
functions f:X — Y, f #0, so that f(rx) =crf(x), x € X.

Proof. In R: If cr > 0, then both a = r and A = /cr are transcendental
over Q, so there exists an additive a: Q(a) — Q(A), a # 0, so that
a(ax) = Ao(x). Then f = o? is quadratic, non-zero, and

f(rx) = a(ax)? = (Vero(x))? = crf(x), x € Q(a).

If cr <0, leta=randA = +/—cr, then there exist non-zero additive

functions o, B:Q(a) — Q(A), so that a(ax) = Aa(x) and
B(ax) = —AB(x). Then f = a3 is quadratic, non-zero, and

f(rx) = ot(ax)B(ax) = —A%a(x)B(x) = crf(x), x € Q(a).

In C: Let A be a square root of cr. Construct a, & and f as in the first
case.
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For r £ QQ algebraic over Q we have only partial results.

If » € R satisfies " = ay € Q for some integer n > 2, then there are no
non-zero quadratic functions satisfying f(rx) = crf(x).

If the minimal polynomial of r € R over Q has degree 2, there are no
non-zero quadratic functions satisfying f(rx) = crf(x).

Forr = %(—1 + i\/§) e C, there exist non-zero quadratic functions

| f:Q(r) — Q(r) so that f(rx) = crf(x).
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In general, let p(x) = x* +a,_1x""' +--- +ag be the minimal polynomial
of r over Q. We try to define a symmetric, 2-additive mapping
F:Q(r)* — Q(r) by determining its values on the basis

{(r',r/)|0<i,j<n}of Q(r)

f(r)y=F({',r)=cr,0<i<n,and

F(r',r/)=crF(1,r/ ") fori < j <n.

Then the values F(1,r/) for 1 < j < n must be determined so that the
following system of n equations is satisfied:

)=c"r" —Zazc’r’+22aa] rF(1,r
1<j
and

i—1 n—1
F(r',r") =crF(1,r"") = Z —a;c/r'F(1,r 7))+ Z —a;c'r'F(1,r77)
j=0 J=t

forl <i<n-—1.
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For n = 2 these are only two equations,

c*r* = a} + ajer 4 2apa i F(1,r)
crF(1,r) = —aoF(1,r) —aycr.
From the latter we obtain

—A1Cr
cr+ag

F(l,r)=

Substituting this into the first equation we obtain conditions on the
coefficients a; of the minimal polynomial, namely aj = ag and a; = c,
thus the minimal polynomial of r is

x* 4 cx+c?
which has the two complex roots

(—1+iV3).

DN O
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