

The general linear equation

f(ax+by+c) = Af(x) + Bf(y) + C

has been considered in section 2.2.6 of János Aczél's *Lectures on functional equations and their applications*, Academic Press, 1966, for functions from \mathbb{R} to \mathbb{R} and,

in more detail, for functions from \mathbb{R}^N to \mathbb{R} in section 13.10 of Marek Kuczma's book *An introduction to the theory of functional equations and inequalities*, Birkhäuser, 2009 (2nd ed.).

Page 2 of 21

A generalization

Here we consider a generalization, i.e., the equation

$$f\left(\sum_{i=1}^{n} a_{i}x_{i} + a_{0}\right) = \sum_{i=1}^{n} A_{i}f(x_{i}) + A_{0}$$

with $f: V \to W$ and vector spaces V, W over not necessarily identical fields K and L.

The equation with $A_0, a_0 = 0$ was considered by Paolo Leonetti and Jens Schwaiger in *The general linear equation on open connected sets*, in *Acta Math. Hung.* vol. 161, number 1, pp. 201–211, (2020).

The last paper was motivated by D. Głazowska et al., *Commutativity of integral quasiarithmetic means on measure spaces*, in *Acta Math. Hung.*, vol. 153, number 2, pp. 350–355, (2017), where all continuous solutions of the equation f(ax + by) = af(x) + bf(y) when x, y > 0 were found.

Qui

Page **3** of **21**

1 Theorem

Let *V* be a vector space over a field *K* and *W* a vector space over a field *L* where $V, W \neq \{0\}$. The following assertions are equivalent: 1. char *K* = char *L*.

2. There exists an additive function $f: V \to W$ such that $f \neq 0$.

Home Page Title Page Contents	1 Theorem Let <i>V</i> be a vector space over a field <i>K</i> and <i>W</i> a vector space over a field <i>L</i> where $V, W \neq \{0\}$. The following assertions are equivalent: 1. char <i>K</i> = char <i>L</i> . 2. There exists an additive function $f: V \to W$ such that $f \neq 0$.
	Proof. Assume 1. holds true: Let P be the common prime field of K and L ,
Go Back Full Screen	
Close	
Quit	

1 Theorem

Let *V* be a vector space over a field *K* and *W* a vector space over a field *L* where $V, W \neq \{0\}$. The following assertions are equivalent: 1. char *K* = char *L*.

2. There exists an additive function $f: V \to W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let *P* be the common prime field of *K* and *L*, *V* and *W* are vector spaces over *P*, let *B* be a basis of *V* over *P*, $B \neq \emptyset$, $w_0 \in W \setminus \{0\}$,

1 Theorem

Let *V* be a vector space over a field *K* and *W* a vector space over a field *L* where $V, W \neq \{0\}$. The following assertions are equivalent: 1. char *K* = char *L*.

2. There exists an additive function $f: V \to W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let *P* be the common prime field of *K* and *L*, *V* and *W* are vector spaces over *P*, let *B* be a basis of *V* over *P*, $B \neq \emptyset$, $w_0 \in W \setminus \{0\}$, the *P*-linear function $f: V \to W$ defined by $f(b) = w_0$ for all $b \in B$ is additive and non-zero.

1 Theorem

Let *V* be a vector space over a field *K* and *W* a vector space over a field *L* where $V, W \neq \{0\}$. The following assertions are equivalent: 1. char *K* = char *L*.

2. There exists an additive function $f: V \to W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let *P* be the common prime field of *K* and *L*, *V* and *W* are vector spaces over *P*, let *B* be a basis of *V* over *P*, $B \neq \emptyset$, $w_0 \in W \setminus \{0\}$, the *P*-linear function $f: V \to W$ defined by $f(b) = w_0$ for all $b \in B$ is additive and non-zero.

Assume 2. holds true: $f: V \to W$ non-zero and additive, $v_0 \in V$ such that $w_0 = f(v_0) \neq 0$.

1 Theorem

Let *V* be a vector space over a field *K* and *W* a vector space over a field *L* where $V, W \neq \{0\}$. The following assertions are equivalent: 1. char *K* = char *L*.

2. There exists an additive function $f: V \to W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let *P* be the common prime field of *K* and *L*, *V* and *W* are vector spaces over *P*, let *B* be a basis of *V* over *P*, $B \neq \emptyset$, $w_0 \in W \setminus \{0\}$, the *P*-linear function $f: V \to W$ defined by $f(b) = w_0$ for all $b \in B$ is additive and non-zero.

Assume 2. holds true: $f: V \to W$ non-zero and additive, $v_0 \in V$ such that $w_0 = f(v_0) \neq 0$. If char K = p > 0, then $0 = f(0) = f((p \cdot 1_K)v_0) = (p \cdot 1_L)f(v_0) = (p \cdot 1_L)w_0$.

1 Theorem

Let *V* be a vector space over a field *K* and *W* a vector space over a field *L* where $V, W \neq \{0\}$. The following assertions are equivalent: 1. char *K* = char *L*.

2. There exists an additive function $f: V \to W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let *P* be the common prime field of *K* and *L*, *V* and *W* are vector spaces over *P*, let *B* be a basis of *V* over *P*, $B \neq \emptyset$, $w_0 \in W \setminus \{0\}$, the *P*-linear function $f: V \to W$ defined by $f(b) = w_0$ for all $b \in B$ is additive and non-zero.

Assume 2. holds true: $f: V \to W$ non-zero and additive, $v_0 \in V$ such that $w_0 = f(v_0) \neq 0$. If char K = p > 0, then $0 = f(0) = f((p \cdot 1_K)v_0) = (p \cdot 1_L)f(v_0) = (p \cdot 1_L)w_0$. If char K = 0, then $0 \neq w_0 = f(v_0) = f(n \cdot \frac{1_K}{n}v_0) = (n \cdot 1_L)f(\frac{1_K}{n}v_0)$, for all positive integers *n*, whence $n \cdot 1_L \neq 0$ for all *n*. \Box

Lemma 2

Page 5 of 21

Consider two vector spaces *V* and *W* over *K* and *L*, respectively, and a subset $\emptyset \neq A \subseteq K$ together with a mapping $\varphi: A \rightarrow L$. If a non-trivial additive function $f: V \rightarrow W$ satisfies $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in X$, then φ is injective.

Consider two fields *K* and *L* over the same prime field *P*, a non-empty subset *A* of *K*, and an injective mapping $\varphi: A \to L$. Then the following assertions are equivalent:

- 1. There exists a field-isomorphism $\Phi: P(A) \to P(\varphi(A))$ such that $\Phi(a) = \varphi(a)$ for all $a \in A$.
- 2. For any vector space $V \neq \{0\}$ over *K* and any vector space $W \neq \{0\}$ over *L* there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.
- 3. For some vector space $V \neq \{0\}$ over *K* and some vector space $W \neq \{0\}$ over *L* there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let *B* be a basis of *V* over P(A),

Page 6 of 21

Consider two fields *K* and *L* over the same prime field *P*, a non-empty subset *A* of *K*, and an injective mapping $\varphi: A \to L$. Then the following assertions are equivalent:

- 1. There exists a field-isomorphism $\Phi: P(A) \to P(\varphi(A))$ such that $\Phi(a) = \varphi(a)$ for all $a \in A$.
- 2. For any vector space $V \neq \{0\}$ over *K* and any vector space $W \neq \{0\}$ over *L* there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.

3. For some vector space $V \neq \{0\}$ over K and some vector space $W \neq \{0\}$ over L there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let *B* be a basis of *V* over P(A), $V \ni x = \sum_{b \in B} \lambda_b(x)b$,

Quit

Page 6 of 21

Consider two fields *K* and *L* over the same prime field *P*, a non-empty subset *A* of *K*, and an injective mapping $\varphi: A \to L$. Then the following assertions are equivalent:

- 1. There exists a field-isomorphism $\Phi: P(A) \to P(\varphi(A))$ such that $\Phi(a) = \varphi(a)$ for all $a \in A$.
- 2. For any vector space $V \neq \{0\}$ over *K* and any vector space $W \neq \{0\}$ over *L* there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.

3. For some vector space $V \neq \{0\}$ over *K* and some vector space $W \neq \{0\}$ over *L* there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let *B* be a basis of *V* over P(A), $V \ni x = \sum_{b \in B} \lambda_b(x)b$, $w_0 \in W \setminus \{0\}$,

Page 6 of 21

Consider two fields *K* and *L* over the same prime field *P*, a non-empty subset *A* of *K*, and an injective mapping $\varphi: A \to L$. Then the following assertions are equivalent:

- 1. There exists a field-isomorphism $\Phi: P(A) \to P(\varphi(A))$ such that $\Phi(a) = \varphi(a)$ for all $a \in A$.
- 2. For any vector space $V \neq \{0\}$ over *K* and any vector space $W \neq \{0\}$ over *L* there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.
- 3. For some vector space $V \neq \{0\}$ over *K* and some vector space $W \neq \{0\}$ over *L* there exists an additive function $f: V \to W$ such that $f \neq 0$ and $f(ax) = \varphi(a)f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let *B* be a basis of *V* over P(A), $V \ni x = \sum_{b \in B} \lambda_b(x)b$, $w_0 \in W \setminus \{0\}$, then $f: V \to W$ defined by $f(x) = \Phi(\sum_{b \in B} \lambda_b(x))w_0$ is non-zero, additive, and $f(ax) = \varphi(a)f(x)$, $a \in A$, $x \in V$.

Page 6 of 21

Assume 3. P(A) is the set of all rational functions

$$R(a_1,\ldots,a_n)=\frac{r(a_1,\ldots,a_n)}{s(a_1,\ldots,a_n)}$$

with polynomials $r(X_1, \ldots, X_n), s(X_1, \ldots, X_n) \in P[X_1, \ldots, X_n]$ such that $s(a_1, \ldots, a_n) \neq 0$, for $n \in \mathbb{N}$. Standard arguments prove that $f(R(a_1, \ldots, a_n)x) = R(\varphi(a_1), \ldots, \varphi(a_n))f(x)$ for all rational expressions $R(a_1, \ldots, a_n) \in P(A)$.

Assume 3. P(A) is the set of all rational functions

$$R(a_1,\ldots,a_n)=\frac{r(a_1,\ldots,a_n)}{s(a_1,\ldots,a_n)}$$

with polynomials $r(X_1, \ldots, X_n), s(X_1, \ldots, X_n) \in P[X_1, \ldots, X_n]$ such that $s(a_1, \ldots, a_n) \neq 0$, for $n \in \mathbb{N}$. Standard arguments prove that $f(R(a_1, \ldots, a_n)x) = R(\varphi(a_1), \ldots, \varphi(a_n))f(x)$ for all rational expressions $R(a_1, \ldots, a_n) \in P(A)$.

The function $\Phi: P(A) \rightarrow P(\varphi(A))$ defined by

$$\Phi(R(a_1,\ldots,a_n))=R(\varphi(a_1),\ldots,\varphi(a_n))$$

is well defined, bijective, and a homomorphism.

4 Remark

Consider two fields *K* and *L* over the same prime field *P*, a non-empty subset *A* of *K*, and an injective mapping $\varphi: A \to L$. Moreover, there exists a field isomorphism $\Phi: P(A) \to P(\varphi(A))$ such that $\Phi(a) = \varphi(a)$ for all $a \in A$.

Then for any vector space *V* over *K*, any vector space *W* over *L*, and any basis *B* of *V* over P(A), as well as any mapping $\alpha': B \to W$ there is exactly one additive function $\alpha: V \to W$ with $\alpha|_B = \alpha'$ and $\alpha(ax) = \Phi(a)\alpha(x)$ for all $x \in V$ and all $a \in P(A)$.

The proof is similar to the first part of the previous proof.

Page 8 of 21

Solving the general linear functional equation

$$f\left(\sum_{i=1}^{n} a_i x_i + a_0\right) = \sum_{i=1}^{n} A_i f(x_i) + A_0, \qquad x_i \in V, \ 1 \le i \le n,$$
(1)

for $f: V \to W$, where *V* is a vector space over *K* and *W* is a vector space over *L*, with given scalars $a_i \in K$ and $A_i \in L$, $1 \le i \le n$, $n \ge 2$, and given vectors $a_0 \in V$ and $A_0 \in W$.

Assume that $a_i \neq 0$ for $1 \leq i \leq n$. We define mappings $f_i: V \rightarrow W$, $0 \leq i \leq n$, by

$$f_0(x) = f(x+a_0) - A_0, \qquad f_i(x) = A_i f(\frac{x}{a_i}), \ 1 \le i \le n,$$

then (1) is equivalent to

$$f_0\left(\sum_{i=1}^n x_i\right) = \sum_{i=1}^n f_i(x_i).$$

(2)

Qui

Page **9** of **21**

Let $g_i(x) = f_i(x) - f_i(0)$, $0 \le i \le n$, then $g_i(0) = 0$, $0 \le i \le n$, and

Let
$$g_i(x) = f_i(x) - f_i(0), 0 \le i \le n$$
, then $g_i(0) = 0, 0 \le i \le n$, and
 $g_0\left(\sum_{i=1}^n x_i\right) = \sum_{i=1}^n g_i(x_i)$ (3)
since $f_0(0) = \sum_{i=1}^n f_i(0)$.
From $g_i(0) = 0$ for all i we obtain by (3) that $g_j(x) = g_0(x), x \in V$,
 $1 \le j \le n$. Therefore, the function $\alpha := g_0$ is additive.

Let
$$g_i(x) = f_i(x) - f_i(0), 0 \le i \le n$$
, then $g_i(0) = 0, 0 \le i \le n$, and
 $g_0\left(\sum_{i=1}^n x_i\right) = \sum_{i=1}^n g_i(x_i)$ (3)
since $f_0(0) = \sum_{i=1}^n f_i(0)$.
From $g_i(0) = 0$ for all *i* we obtain by (3) that $g_j(x) = g_0(x), x \in V$,
 $1 \le j \le n$. Therefore, the function $\alpha := g_0$ is additive. Defining
 $\alpha_i = f_i(0), 0 \le i \le n$, we have proven the following consequence of
Theorem 3.
5 Corollary
If $f: V \to W$ satisfies (1) with $a_i \ne 0$ for $1 \le i \le n$, then there exist
constant vectors $\alpha_i \in W$, $0 \le i \le n$, and an additive mapping $\alpha: V \to W$, such that

$$\int f(x+a_0) - A_0 = \alpha(x) + \alpha_0,$$

$$A_i f(\frac{x}{a_i}) = \alpha(x) + \alpha_i, \ 1 \le i \le n, \quad x \in V.$$
(4)

Page 10 of 21

	We immediately get from (4)	
Home Page	$f(x) = \alpha(x) + \alpha'_0, \qquad \alpha'_0 = \alpha_0 + A_0 - \alpha(a_0),$	(5)
Title Page	$A_i \alpha_0' = \alpha_i, \ 1 \leq i \leq n$, and	
Contents	$\alpha(a_i x) = A_i \alpha(x), x \in V, \ 1 \le i \le n.$	(6)
· · · ·	Then (1) reads as	
Page 11 of 21	$\sum_{i=1}^{n} A_i \alpha(x_i) + \alpha'_0 + \alpha(a_0) = \sum_{i=1}^{n} A_i \alpha(x_i) + A \alpha'_0 + A_0,$	
Go Back Full Screen	where $A := \sum_{i=1}^{n} A_i$. Consequently	
Close	$(1-A)\alpha_0'=A_0-\alpha(a_0).$	(7)
Quit		

UNI GRAZ This way we have proven one implication in

6 Theorem

Let *V* and *W* be vector spaces over *K* and *L*, respectively, $a_i \in K \setminus \{0\}$ and $A_i \in L$, $1 \le i \le n$, $n \in \mathbb{N}$, $n \ge 2$, and $f: V \to W$. Moreover let $a_0 \in V$

and $A_0 \in W$. Then the following assertions are equivalent:

1. The function $f: V \to W$ is a solution of (1).

2. There exists an additive function $\alpha: V \to W$ and a constant $\alpha'_0 \in W$, such that f is of the form (5), and α, α'_0 satisfy (6) and (7).

Constant solutions are of the form (5) with $\alpha = 0$. Thus (1) has constant solutions iff $(1-A)\alpha'_0 = A_0$. More exactly in the case $A \neq 1$ this constant is unique and given by $\alpha'_0 = \frac{1}{1-A}A_0$. If A = 1 and $A_0 = 0$ the constant α'_0 is arbitrary. If A = 1 and $A_0 \neq 0$ there are no constant solutions.

Page 12 of 21

Non-constant solutions

Page 13 of 21

Lemma 7 Let V and W be vector spaces over K and L, respectively, and assume that $\alpha: V \to W$ is additive, different from 0, and satisfies (6) with $a_i \neq 0$ for all $1 \le i \le n$. Then for all *i*, *j* we have $a_i = a_j$ if, and only if $A_i = A_j$.

This means that (6) has non-zero additive solutions.

Thus with $S_a := \{a_i \mid 1 \le i \le n\}$ and $S_A := \{A_i \mid 1 \le i \le n\}$ the mapping $\varphi: S_a \to S_A, \varphi(a_i) := A_i$, is well-defined and bijective.

Proof. Assume $a_i = a_j$. Then $A_i \alpha(x) = \alpha(a_i x) = \alpha(a_i x) = A_i \alpha(x)$ for all x. Thus $(A_i - A_i)\alpha = 0$ implying $A_i - A_i = 0$ as $\alpha \neq 0$.

Now assume $A_i = A_j$. Then $0 = A_i \alpha(x) - A_j \alpha(x) = \alpha(a_i x) - \alpha(a_j x) = \alpha(a_j x) = \alpha(a_j x) - \alpha(a_j x) = \alpha(a_j x)$ $\alpha((a_i - a_j)x)$ for all x. If $a_i \neq a_j$ this would imply $\alpha = 0$, a contradiction.

Page 14 of 21

Now we describe all situations guaranteeing the existence of non-constant solutions of (1). Since a solution f of (1) is non-constant iff the corresponding additive function α is non-constant, we may assume that Lemma 7 holds true which ensures that we may apply Remark 4.

8 Theorem

Let $V \neq \{0\}$ and $W \neq \{0\}$ be vector spaces over *K* and *L*, respectively. Assume that *K* and *L* have the same prime field *P*. Assume moreover (the necessary condition for the existence of a non-trivial additive α), that there is a field isomorphism $\Phi: P(a_1, a_2, \ldots, a_n) \rightarrow$ $P(A_1, A_2, \ldots, A_n)$ such that $\Phi(a_i) = A_i$ for all $1 \le i \le n, n \ge 2$. Then the following holds true.

1. If $A := \sum_{i=1}^{n} A_i \neq 1$, then there are non-constant (and also constant) solutions of (1). If we fix a basis *B* of *V* over $P(a_1, a_2, \ldots, a_n)$ and if we choose any mapping $\alpha' : B \to W$ in order to define α as in Remark 4, then the function $f = \alpha + \frac{1}{1-A}(A_0 - \alpha(a_0))$ is a solution of (1) which is not constant iff $\alpha' \neq 0$.

Page 15 of 21

2. If A = 1 and $a_0 \neq 0$ we may fix a basis B of V over $P(a_1, a_2, \ldots, a_n)$ with $a_0 \in B$ and define α with any $\alpha': B \to W$ such that $\alpha'(a_0) = A_0$ and arbitrarily on $B \setminus \{a_0\}$. Then for each of these α the sum $\alpha + \alpha'_0$ with arbitrary $\alpha'_0 \in W$ satisfies (1). If $A_0 \neq 0$, this α is different from 0 and thus f non-constant. If $A_0 = 0$ and $B \setminus \{a_0\} \neq \emptyset$ we get non-constant solutions by choosing some $b \in B \setminus \{a_0\}$ and choosing $\alpha'(b) \neq 0$.

If $B = \{a_0\}$ and $A_0 = 0$ there are only constant solutions.

3. If A = 1 and $a_0 = 0$ there is no solution at all for $A_0 \neq 0$. If $A_0 = 0$ we may choose α as in 1. and an arbitrary $\alpha'_0 \in W$ which results in a solution $f = \alpha + \alpha'_0$ of (1).

Quit

For V = K, W = L this implies

9 Corollary

Consider two fields *K* and *L* over the same prime field *P*, $a_i \in K$ and $A_i \in L$, $0 \le i \le n$, $n \in \mathbb{N}$, $n \ge 2$, where $1 = \sum_{i=1}^n A_i$ and $a_i \ne 0$ for $1 \le i \le n$. The following two assertions are equivalent:

- 1. There exists a non constant solution $f: K \to L$ of (1).
- 2. There exists an additive mapping $\alpha: K \to L$ such that $\alpha(a_0) = A_0$ and the restriction $\Phi := \alpha|_{P(a_1,...,a_n)}$ is a field-isomorphism $P(a_1,...,a_n) \to P(A_1,...,A_n)$ satisfying $\Phi(a_i) = A_i$, $1 \le i \le n$.

Page 16 of 21

The case n = 1

The assumption that all $a_i \neq 0$ in Theorem 6 is not very important. If, for example, $a_n = 0$, (1) with $x_1 = x_2 = \ldots = x_{n-1}$ shows that either *f* is constant or $A_n = 0$, which gives (1) with n - 1 instead of *n*.

The case n = 1

Page 17 of 21

The assumption that all $a_i \neq 0$ in Theorem 6 is not very important. If, for example, $a_n = 0$, (1) with $x_1 = x_2 = \ldots = x_{n-1}$ shows that either *f* is constant or $A_n = 0$, which gives (1) with n - 1 instead of *n*.

The case n = 1 however is of different taste. In this case (1) is a functional equation in one variable of the form $f(\varphi(x)) = \psi(f(x))$ with affine functions φ and ψ . To investigate solvability and general solution in this case asks for the analysis of the fixed points of the iterates of that functions.

Here $\varphi(x)$ is of the form ax + v, for $a \in K^*$ and $x, v \in V$. We will indicate this φ as (a, v). The set $\{(a, v) \mid a \in K^*, v \in V\}$ of all these φ together with multiplication (a, v)(a', v') = (aa', av' + v) can be considered as a subgroup of the group of all affine mappings on *V*. The mapping $((a, v), x) \mapsto ax + v$ defines an action of this group on *V*.

Now (1) for n = 1 reads as

$$f((a_1, a_0)x) = (A_1, A_0)f(x), \qquad x \in V.$$
(8)

If $a_1 = 1$, then we assume that $a_0 \neq 0$ since (1,0) is the identity on *V*. Let *G* and *H* be the cyclic groups generated by (a_1, a_0) and (A_1, A_0) , respectively.

Let *V* and *W* be vector spaces over *K* and *L*, respectively, $a_1 \in K^*$, $A_1 \in L^*$, $a_0 \in V$ and $A_0 \in W$.

- 1. If $f: V \to W$ satisfies (8), then for any $x \in V$ the function f maps the G-orbit G(x) surjectively on the H-orbit H(f(x)). If, moreover, $(a_1, a_0)^n x = x$ for some $n \in \mathbb{Z}$, then $(A_1, A_0)^n f(x) = f(x)$.
- 2. In order to construct solutions $f: V \to W$ of (8), determine a system of representatives of the *G*-orbits on *V*. On each *G*-orbit we define *f* separately in the following way. If the *G*-orbit of a representative *x* is infinite, choose any $y \in W$ and define f(x) := y. If the size of the *G*-orbit of *x* is $n \in \mathbb{N}$, then choose some $y \in W$ such that the size of the *H*-orbit of *y* is a divisor of *n*, and define f(x) := y. On the remaining elements of G(x) define $f(x') = (A_1, A_0)^n y$ if x' is of the form $(a_1, a_0)^n x$ for some $n \in \mathbb{Z}$. Then *f* satisfies (8).

Page 19 of 21

UNI GRAZ This yields the following description of the situations when (8) has constant or non-constant solutions.

- 1. If $a_1 = 1$ and char(K) = p, then there exist solutions of (8) if and only if there exist *H*-orbits on *W* of size 1 or *p*. If there are no *H*-orbits of size *p* but one orbit of size 1, then we have only constant solutions of (8).
- 2. If $a_1 = 1$ and char(K) = 0, then there exist both constant and non-constant solutions of (8).
- 3. If a_1 is of infinite order, then there exist both constant and non-constant solutions of (8).
- 4. If $a_1 \neq 1$ is of finite order, then there exist solutions of (8) if and only if $A_1 \neq 1$. In this situation there exist non-constant solutions of (8) if and only if there exist *H*-orbits on *W* of size d > 1 such that *d* is a divisor of ord(a_1).

Contents

UNI

Non-trivial additive functions between vector spaces over not necessarily equal fields The general linear equation A generalization Additive functions between vector spaces Solving the general linear functional equation Non-constant solutions The case n = 1