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The general linear equation

f (ax+by+ c) = A f (x)+B f (y)+C

has been considered in section 2.2.6 of János Aczél’s Lectures on
functional equations and their applications, Academic Press, 1966, for
functions from R to R and,

in more detail, for functions from RN to R in section 13.10 of Marek
Kuczma’s book An introduction to the theory of functional equations and
inequalities, Birkhäuser, 2009 (2nd ed.).
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A generalization

Here we consider a generalization, i.e., the equation

f
( n

∑
i=1

aixi+a0

)
=

n

∑
i=1

Ai f (xi)+A0

with f :V →W and vector spaces V,W over not necessarily identical
fields K and L.

The equation with A0,a0 = 0 was considered by Paolo Leonetti and Jens
Schwaiger in The general linear equation on open connected sets, in
Acta Math. Hung. vol. 161, number 1, pp. 201–211, (2020).

The last paper was motivated by D. Głazowska et al., Commutativity of
integral quasiarithmetic means on measure spaces, in Acta Math.
Hung., vol. 153, number 2, pp. 350–355, (2017), where all continuous
solutions of the equation f (ax+by) = a f (x)+b f (y) when x,y > 0 were
found.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L,
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P,
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P, let B be a basis of V over P,
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P, let B be a basis of V over P, B 6= /0,
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P, let B be a basis of V over P, B 6= /0,
w0 ∈W \{0},
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P, let B be a basis of V over P, B 6= /0,
w0 ∈W \{0}, the P-linear function f :V →W defined by f (b) = w0 for all
b ∈ B is additive and non-zero.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P, let B be a basis of V over P, B 6= /0,
w0 ∈W \{0}, the P-linear function f :V →W defined by f (b) = w0 for all
b ∈ B is additive and non-zero.

Assume 2. holds true: f :V →W non-zero and additive, v0 ∈V such that
w0 = f (v0) 6= 0.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P, let B be a basis of V over P, B 6= /0,
w0 ∈W \{0}, the P-linear function f :V →W defined by f (b) = w0 for all
b ∈ B is additive and non-zero.

Assume 2. holds true: f :V →W non-zero and additive, v0 ∈V such that
w0 = f (v0) 6= 0. If charK = p > 0, then 0 = f (0) = f ((p · 1K)v0) = (p ·
1L) f (v0) = (p ·1L)w0.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a
field L where V,W 6= {0}. The following assertions are equivalent:
1. charK = charL.
2. There exists an additive function f :V →W such that f 6= 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L, V and W are vector spaces over P, let B be a basis of V over P, B 6= /0,
w0 ∈W \{0}, the P-linear function f :V →W defined by f (b) = w0 for all
b ∈ B is additive and non-zero.

Assume 2. holds true: f :V →W non-zero and additive, v0 ∈V such that
w0 = f (v0) 6= 0. If charK = p > 0, then 0 = f (0) = f ((p · 1K)v0) = (p ·
1L) f (v0) = (p ·1L)w0. If charK = 0, then 0 6= w0 = f (v0) = f (n · 1K

n v0) =

(n ·1L) f (1K
n v0), for all positive integers n, whence n ·1L 6= 0 for all n. �
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Lemma 2
Consider two vector spaces V and W over K and L, respectively, and
a subset /0 6= A⊆ K together with a mapping ϕ:A→ L. If a non-trivial
additive function f :V →W satisfies f (ax) = ϕ(a) f (x) for all a∈ A and
x ∈ X , then ϕ is injective.
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3 Theorem
Consider two fields K and L over the same prime field P, a non-empty
subset A of K, and an injective mapping ϕ:A→ L. Then the following
assertions are equivalent:
1. There exists a field-isomorphism Φ:P(A) → P(ϕ(A)) such that

Φ(a) = ϕ(a) for all a ∈ A.
2. For any vector space V 6= {0} over K and any vector space W 6= {0}

over L there exists an additive function f :V →W such that f 6= 0
and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

3. For some vector space V 6= {0} over K and some vector space
W 6= {0} over L there exists an additive function f :V →W such
that f 6= 0 and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

Proof. Assume 1. Let B be a basis of V over P(A),
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3 Theorem
Consider two fields K and L over the same prime field P, a non-empty
subset A of K, and an injective mapping ϕ:A→ L. Then the following
assertions are equivalent:
1. There exists a field-isomorphism Φ:P(A) → P(ϕ(A)) such that

Φ(a) = ϕ(a) for all a ∈ A.
2. For any vector space V 6= {0} over K and any vector space W 6= {0}

over L there exists an additive function f :V →W such that f 6= 0
and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

3. For some vector space V 6= {0} over K and some vector space
W 6= {0} over L there exists an additive function f :V →W such
that f 6= 0 and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

Proof. Assume 1. Let B be a basis of V over P(A), V 3 x = ∑b∈B λb(x)b,
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3 Theorem
Consider two fields K and L over the same prime field P, a non-empty
subset A of K, and an injective mapping ϕ:A→ L. Then the following
assertions are equivalent:
1. There exists a field-isomorphism Φ:P(A) → P(ϕ(A)) such that

Φ(a) = ϕ(a) for all a ∈ A.
2. For any vector space V 6= {0} over K and any vector space W 6= {0}

over L there exists an additive function f :V →W such that f 6= 0
and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

3. For some vector space V 6= {0} over K and some vector space
W 6= {0} over L there exists an additive function f :V →W such
that f 6= 0 and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

Proof. Assume 1. Let B be a basis of V over P(A), V 3 x = ∑b∈B λb(x)b,

w0 ∈W \{0},
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3 Theorem
Consider two fields K and L over the same prime field P, a non-empty
subset A of K, and an injective mapping ϕ:A→ L. Then the following
assertions are equivalent:
1. There exists a field-isomorphism Φ:P(A) → P(ϕ(A)) such that

Φ(a) = ϕ(a) for all a ∈ A.
2. For any vector space V 6= {0} over K and any vector space W 6= {0}

over L there exists an additive function f :V →W such that f 6= 0
and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

3. For some vector space V 6= {0} over K and some vector space
W 6= {0} over L there exists an additive function f :V →W such
that f 6= 0 and f (ax) = ϕ(a) f (x) for all a ∈ A and x ∈V .

Proof. Assume 1. Let B be a basis of V over P(A), V 3 x = ∑b∈B λb(x)b,

w0 ∈W \{0}, then f :V →W defined by f (x) =Φ

(
∑b∈B λb(x)

)
w0 is non-

zero, additive, and f (ax) = ϕ(a) f (x), a ∈ A, x ∈V .
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Assume 3. P(A) is the set of all rational functions

R(a1, . . . ,an) =
r(a1, . . . ,an)

s(a1, . . . ,an)

with polynomials r(X1, . . . ,Xn),s(X1, . . . ,Xn) ∈ P[X1, . . . ,Xn] such that
s(a1, . . . ,an) 6= 0, for n ∈ N. Standard arguments prove that
f (R(a1, . . . ,an)x) = R(ϕ(a1), . . . ,ϕ(an)) f (x) for all rational expressions
R(a1, . . . ,an) ∈ P(A).
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Assume 3. P(A) is the set of all rational functions

R(a1, . . . ,an) =
r(a1, . . . ,an)

s(a1, . . . ,an)

with polynomials r(X1, . . . ,Xn),s(X1, . . . ,Xn) ∈ P[X1, . . . ,Xn] such that
s(a1, . . . ,an) 6= 0, for n ∈ N. Standard arguments prove that
f (R(a1, . . . ,an)x) = R(ϕ(a1), . . . ,ϕ(an)) f (x) for all rational expressions
R(a1, . . . ,an) ∈ P(A).

The function Φ:P(A)→ P(ϕ(A))defined by

Φ(R(a1, . . . ,an)) = R(ϕ(a1), . . . ,ϕ(an))

is well defined, bijective, and a homomorphism. �
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4 Remark
Consider two fields K and L over the same prime field P, a non-empty
subset A of K, and an injective mapping ϕ:A→ L. Moreover, there
exists a field isomorphism Φ:P(A)→ P(ϕ(A)) such that Φ(a) = ϕ(a)
for all a ∈ A.

Then for any vector space V over K, any vector space W over L, and
any basis B of V over P(A), as well as any mapping α ′:B→W there
is exactly one additive function α:V →W with α|B = α ′ and α(ax) =
Φ(a)α(x) for all x ∈V and all a ∈ P(A).

The proof is similar to the first part of the previous proof.
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Solving the general linear functional equation

f
( n

∑
i=1

aixi+a0

)
=

n

∑
i=1

Ai f (xi)+A0, xi ∈V, 1≤ i≤ n, (1)

for f :V →W , where V is a vector space over K and W is a vector space
over L, with given scalars ai ∈ K and Ai ∈ L, 1≤ i≤ n, n≥ 2, and given
vectors a0 ∈V and A0 ∈W .

Assume that ai 6= 0 for 1≤ i≤ n. We define mappings fi:V →W ,
0≤ i≤ n, by

f0(x) = f (x+a0)−A0, fi(x) = Ai f (
x
ai
), 1≤ i≤ n,

then (1) is equivalent to

f0

( n

∑
i=1

xi

)
=

n

∑
i=1

fi(xi). (2)
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Let gi(x) = fi(x)− fi(0), 0≤ i≤ n, then gi(0) = 0, 0≤ i≤ n, and

http://www.uni-graz.at
http://https://imsc.uni-graz.at/fripertinger/


Home Page

Title Page

Contents

JJ II

J I

Page 10 of 21

Go Back

Full Screen

Close

Quit

Let gi(x) = fi(x)− fi(0), 0≤ i≤ n, then gi(0) = 0, 0≤ i≤ n, and

g0

( n

∑
i=1

xi

)
=

n

∑
i=1

gi(xi) (3)

since f0(0) = ∑
n
i=1 fi(0).

From gi(0) = 0 for all i we obtain by (3) that g j(x) = g0(x), x ∈V ,
1≤ j ≤ n. Therefore, the function α := g0 is additive.
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Let gi(x) = fi(x)− fi(0), 0≤ i≤ n, then gi(0) = 0, 0≤ i≤ n, and

g0

( n

∑
i=1

xi

)
=

n

∑
i=1

gi(xi) (3)

since f0(0) = ∑
n
i=1 fi(0).

From gi(0) = 0 for all i we obtain by (3) that g j(x) = g0(x), x ∈V ,
1≤ j ≤ n. Therefore, the function α := g0 is additive. Defining
αi = fi(0), 0≤ i≤ n, we have proven the following consequence of
Theorem 3.

5 Corollary
If f :V →W satisfies (1) with ai 6= 0 for 1 ≤ i ≤ n, then there exist
constant vectors αi ∈W , 0 ≤ i ≤ n, and an additive mapping α:V →
W , such that

f (x+a0)−A0 =α(x)+α0, Ai f (
x
ai
)=α(x)+αi, 1≤ i≤ n, x∈V.

(4)
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We immediately get from (4)

f (x) = α(x)+α
′
0, α

′
0 = α0+A0−α(a0), (5)

Aiα
′
0 = αi, 1≤ i≤ n, and

α(aix) = Aiα(x), x ∈V, 1≤ i≤ n. (6)

Then (1) reads as

n

∑
i=1

Aiα(xi)+α
′
0+α(a0) =

n

∑
i=1

Aiα(xi)+Aα
′
0+A0,

where A := ∑
n
i=1 Ai. Consequently

(1−A)α ′0 = A0−α(a0). (7)
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This way we have proven one implication in

6 Theorem
Let V and W be vector spaces over K and L, respectively, ai ∈ K \{0}
and Ai ∈ L, 1≤ i≤ n, n∈N,n≥ 2, and f :V →W . Moreover let a0 ∈V
and A0 ∈W . Then the following assertions are equivalent:
1. The function f :V →W is a solution of (1).
2. There exists an additive function α:V →W and a constant α ′0 ∈W ,

such that f is of the form (5), and α,α ′0 satisfy (6) and (7).

Constant solutions are of the form (5) with α = 0. Thus (1) has constant
solutions iff (1−A)α ′0 = A0. More exactly in the case A 6= 1 this constant
is unique and given by α ′0 =

1
1−A A0. If A = 1 and A0 = 0 the constant α ′0

is arbitrary. If A = 1 and A0 6= 0 there are no constant solutions.
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Non-constant solutions

This means that (6) has non-zero additive solutions.

Lemma 7
Let V and W be vector spaces over K and L, respectively, and assume
that α:V →W is additive, different from 0, and satisfies (6) with ai 6= 0
for all 1≤ i≤ n. Then for all i, j we have ai = a j if, and only if Ai = A j.

Thus with Sa := {ai | 1≤ i≤ n} and SA := {Ai | 1≤ i≤ n} the mapping
ϕ:Sa→ SA, ϕ(ai) := Ai, is well-defined and bijective.

Proof. Assume ai = a j. Then Aiα(x) = α(aix) = α(a jx) = A jα(x) for
all x. Thus (Ai−A j)α = 0 implying Ai−A j = 0 as α 6= 0.

Now assume Ai = A j. Then 0 = Aiα(x)−A jα(x) = α(aix)−α(a jx) =
α((ai− a j)x) for all x. If ai 6= a j this would imply α = 0, a contradiction.

�
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Now we describe all situations guaranteeing the existence of
non-constant solutions of (1). Since a solution f of (1) is non-constant iff
the corresponding additive function α is non-constant, we may assume
that Lemma 7 holds true which ensures that we may apply Remark 4.

8 Theorem
Let V 6= {0} and W 6= {0} be vector spaces over K and L, respectively.
Assume that K and L have the same prime field P. Assume
moreover (the necessary condition for the existence of a non-trivial
additive α), that there is a field isomorphism Φ:P(a1,a2, . . . ,an) →
P(A1,A2, . . . ,An) such that Φ(ai) = Ai for all 1 ≤ i ≤ n, n ≥ 2. Then
the following holds true.

1. If A := ∑
n
i=1 Ai 6= 1, then there are non-constant (and also constant)

solutions of (1). If we fix a basis B of V over P(a1,a2, . . . ,an) and
if we choose any mapping α ′:B→W in order to define α as in
Remark 4, then the function f = α + 1

1−A (A0−α(a0)) is a solution
of (1) which is not constant iff α ′ 6= 0.
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2. If A = 1 and a0 6= 0 we may fix a basis B of V over P(a1,a2, . . . ,an)

with a0 ∈ B and define α with any α ′:B→W such that α ′(a0) =

A0 and arbitrarily on B \ {a0}. Then for each of these α the sum
α+α ′0 with arbitrary α ′0 ∈W satisfies (1). If A0 6= 0, this α is different
from 0 and thus f non-constant. If A0 = 0 and B\{a0} 6= /0 we get
non-constant solutions by choosing some b∈ B\{a0} and choosing
α ′(b) 6= 0.

If B = {a0} and A0 = 0 there are only constant solutions.

3. If A = 1 and a0 = 0 there is no solution at all for A0 6= 0. If A0 = 0 we
may choose α as in 1. and an arbitrary α ′0 ∈W which results in a
solution f = α +α ′0 of (1).
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For V = K, W = L this implies

9 Corollary
Consider two fields K and L over the same prime field P, ai ∈ K and
Ai ∈ L, 0 ≤ i ≤ n, n ∈ N, n ≥ 2, where 1 = ∑

n
i=1 Ai and ai 6= 0 for

1≤ i≤ n. The following two assertions are equivalent:

1. There exists a non constant solution f :K→ L of (1).

2. There exists an additive mapping α:K → L such that α(a0) =

A0 and the restriction Φ := α|P(a1,...,an) is a field-isomorphism
P(a1, . . . ,an)→ P(A1, . . . ,An) satisfying Φ(ai) = Ai, 1≤ i≤ n.
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The case n = 1

The assumption that all ai 6= 0 in Theorem 6 is not very important. If, for
example, an = 0, (1) with x1 = x2 = . . .= xn−1 shows that either f is
constant or An = 0, which gives (1) with n−1 instead of n.
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The case n = 1

The assumption that all ai 6= 0 in Theorem 6 is not very important. If, for
example, an = 0, (1) with x1 = x2 = . . .= xn−1 shows that either f is
constant or An = 0, which gives (1) with n−1 instead of n.

The case n = 1 however is of different taste. In this case (1) is a
functional equation in one variable of the form f (ϕ(x)) = ψ( f (x)) with
affine functions ϕ and ψ . To investigate solvability and general solution
in this case asks for the analysis of the fixed points of the iterates of that
functions.

Here ϕ(x) is of the form ax+ v, for a ∈ K∗ and x,v ∈V . We will indicate
this ϕ as (a,v). The set {(a,v) | a ∈ K∗, v ∈V} of all these ϕ together
with multiplication (a,v)(a′,v′) = (aa′,av′+ v) can be considered as a
subgroup of the group of all affine mappings on V . The mapping
((a,v),x) 7→ ax+ v defines an action of this group on V .
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Now (1) for n = 1 reads as

f ((a1,a0)x) = (A1,A0) f (x), x ∈V. (8)

If a1 = 1, then we assume that a0 6= 0 since (1,0) is the identity on V .
Let G and H be the cyclic groups generated by (a1,a0) and (A1,A0),
respectively.
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10 Theorem
Let V and W be vector spaces over K and L, respectively, a1 ∈ K∗,
A1 ∈ L∗, a0 ∈V and A0 ∈W .

1. If f :V →W satisfies (8), then for any x ∈ V the function f maps
the G-orbit G(x) surjectively on the H-orbit H( f (x)). If, moreover,
(a1,a0)

nx = x for some n ∈ Z, then (A1,A0)
n f (x) = f (x).

2. In order to construct solutions f :V →W of (8), determine a system
of representatives of the G-orbits on V . On each G-orbit we define
f separately in the following way. If the G-orbit of a representative x
is infinite, choose any y ∈W and define f (x) := y. If the size of the
G-orbit of x is n ∈ N, then choose some y ∈W such that the size
of the H-orbit of y is a divisor of n, and define f (x) := y. On the
remaining elements of G(x) define f (x′) = (A1,A0)

ny if x′ is of the
form (a1,a0)

nx for some n ∈ Z. Then f satisfies (8).

http://www.uni-graz.at
http://https://imsc.uni-graz.at/fripertinger/


Home Page

Title Page

Contents

JJ II

J I

Page 20 of 21

Go Back

Full Screen

Close

Quit

This yields the following description of the situations when (8) has
constant or non-constant solutions.

1. If a1 = 1 and char(K) = p, then there exist solutions of (8) if and only
if there exist H-orbits on W of size 1 or p. If there are no H-orbits of
size p but one orbit of size 1, then we have only constant solutions of
(8).

2. If a1 = 1 and char(K) = 0, then there exist both constant and non-
constant solutions of (8).

3. If a1 is of infinite order, then there exist both constant and non-constant
solutions of (8).

4. If a1 6= 1 is of finite order, then there exist solutions of (8) if and only if
A1 6= 1. In this situation there exist non-constant solutions of (8) if and
only if there exist H-orbits on W of size d > 1 such that d is a divisor
of ord(a1).

http://www.uni-graz.at
http://https://imsc.uni-graz.at/fripertinger/


Home Page

Title Page

Contents

JJ II

J I

Page 21 of 21

Go Back

Full Screen

Close

Quit

Contents

Non-trivial additive functions between vector spaces over not
necessarily equal fields
The general linear equation
A generalization
Additive functions between vector spaces
Solving the general linear functional equation
Non-constant solutions
The case n = 1

http://www.uni-graz.at
http://https://imsc.uni-graz.at/fripertinger/

