Non-trivial additive functions between vector spaces over not necessarily equal fields

Jointly written with Jens Schwaiger

Harald Fripertinger
Karl-Franzens-Universität Graz
59-th ISFE, June 18-25, 2023, Hajdúszoboszló, Hungary

The general linear equation

$$
f(a x+b y+c)=A f(x)+B f(y)+C
$$

has been considered in section 2.2.6 of János Aczél's Lectures on functional equations and their applications, Academic Press, 1966, for functions from \mathbb{R} to \mathbb{R} and,
in more detail, for functions from \mathbb{R}^{N} to \mathbb{R} in section 13.10 of Marek Kuczma's book An introduction to the theory of functional equations and inequalities, Birkhäuser, 2009 (2nd ed.).

A generalization

Here we consider a generalization, i.e., the equation

$$
f\left(\sum_{i=1}^{n} a_{i} x_{i}+a_{0}\right)=\sum_{i=1}^{n} A_{i} f\left(x_{i}\right)+A_{0}
$$

with $f: V \rightarrow W$ and vector spaces V, W over not necessarily identical fields K and L.

The equation with $A_{0}, a_{0}=0$ was considered by Paolo Leonetti and Jens Schwaiger in The general linear equation on open connected sets, in Acta Math. Hung. vol. 161, number 1, pp. 201-211, (2020).

The last paper was motivated by D. Głazowska et al., Commutativity of integral quasiarithmetic means on measure spaces, in Acta Math. Hung., vol. 153, number 2, pp. 350-355, (2017), where all continuous solutions of the equation $f(a x+b y)=a f(x)+b f(y)$ when $x, y>0$ were found.

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L,

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P,

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P, let B be a basis of V over P,

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P, let B be a basis of V over $P, B \neq \emptyset$,

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P, let B be a basis of V over $P, B \neq \emptyset$, $w_{0} \in W \backslash\{0\}$,

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P, let B be a basis of V over $P, B \neq \emptyset$, $w_{0} \in W \backslash\{0\}$, the P-linear function $f: V \rightarrow W$ defined by $f(b)=w_{0}$ for all $b \in B$ is additive and non-zero.

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P, let B be a basis of V over $P, B \neq \emptyset$, $w_{0} \in W \backslash\{0\}$, the P-linear function $f: V \rightarrow W$ defined by $f(b)=w_{0}$ for all $b \in B$ is additive and non-zero.

Assume 2. holds true: $f: V \rightarrow W$ non-zero and additive, $v_{0} \in V$ such that $w_{0}=f\left(v_{0}\right) \neq 0$.

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P, let B be a basis of V over $P, B \neq \emptyset$, $w_{0} \in W \backslash\{0\}$, the P-linear function $f: V \rightarrow W$ defined by $f(b)=w_{0}$ for all $b \in B$ is additive and non-zero.

Assume 2. holds true: $f: V \rightarrow W$ non-zero and additive, $v_{0} \in V$ such that $w_{0}=f\left(v_{0}\right) \neq 0$. If char $K=p>0$, then $0=f(0)=f\left(\left(p \cdot 1_{K}\right) v_{0}\right)=(p$. $\left.1_{L}\right) f\left(v_{0}\right)=\left(p \cdot 1_{L}\right) w_{0}$.

Additive functions between vector spaces

1 Theorem

Let V be a vector space over a field K and W a vector space over a field L where $V, W \neq\{0\}$. The following assertions are equivalent:

1. char $K=\operatorname{char} L$.
2. There exists an additive function $f: V \rightarrow W$ such that $f \neq 0$.

Proof. Assume 1. holds true: Let P be the common prime field of K and L, V and W are vector spaces over P, let B be a basis of V over $P, B \neq \emptyset$, $w_{0} \in W \backslash\{0\}$, the P-linear function $f: V \rightarrow W$ defined by $f(b)=w_{0}$ for all $b \in B$ is additive and non-zero.

Assume 2. holds true: $f: V \rightarrow W$ non-zero and additive, $v_{0} \in V$ such that $w_{0}=f\left(v_{0}\right) \neq 0$. If char $K=p>0$, then $0=f(0)=f\left(\left(p \cdot 1_{K}\right) v_{0}\right)=(p$. $\left.1_{L}\right) f\left(v_{0}\right)=\left(p \cdot 1_{L}\right) w_{0}$. If char $K=0$, then $0 \neq w_{0}=f\left(v_{0}\right)=f\left(n \cdot \frac{1_{K}}{n} v_{0}\right)=$ $\left(n \cdot 1_{L}\right) f\left(\frac{1_{K}}{n} v_{0}\right)$, for all positive integers n, whence $n \cdot 1_{L} \neq 0$ for all n.

Lemma 2

Consider two vector spaces V and W over K and L, respectively, and a subset $\emptyset \neq A \subseteq K$ together with a mapping $\varphi: A \rightarrow L$. If a non-trivial additive function $f: V \rightarrow W$ satisfies $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in X$, then φ is injective.

3 Theorem

Consider two fields K and L over the same prime field P, a non-empty subset A of K, and an injective mapping $\varphi: A \rightarrow L$. Then the following assertions are equivalent:

1. There exists a field-isomorphism $\Phi: P(A) \rightarrow P(\varphi(A))$ such that $\Phi(a)=\varphi(a)$ for all $a \in A$.
2. For any vector space $V \neq\{0\}$ over K and any vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.
3. For some vector space $V \neq\{0\}$ over K and some vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let B be a basis of V over $P(A)$,

3 Theorem

Consider two fields K and L over the same prime field P, a non-empty subset A of K, and an injective mapping $\varphi: A \rightarrow L$. Then the following assertions are equivalent:

1. There exists a field-isomorphism $\Phi: P(A) \rightarrow P(\varphi(A))$ such that $\Phi(a)=\varphi(a)$ for all $a \in A$.
2. For any vector space $V \neq\{0\}$ over K and any vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.
3. For some vector space $V \neq\{0\}$ over K and some vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let B be a basis of V over $P(A), V \ni x=\sum_{b \in B} \lambda_{b}(x) b$,

3 Theorem

Consider two fields K and L over the same prime field P, a non-empty subset A of K, and an injective mapping $\varphi: A \rightarrow L$. Then the following assertions are equivalent:

1. There exists a field-isomorphism $\Phi: P(A) \rightarrow P(\varphi(A))$ such that $\Phi(a)=\varphi(a)$ for all $a \in A$.
2. For any vector space $V \neq\{0\}$ over K and any vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.
3. For some vector space $V \neq\{0\}$ over K and some vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let B be a basis of V over $P(A), V \ni x=\sum_{b \in B} \lambda_{b}(x) b$, $w_{0} \in W \backslash\{0\}$,

3 Theorem

Consider two fields K and L over the same prime field P, a non-empty subset A of K, and an injective mapping $\varphi: A \rightarrow L$. Then the following assertions are equivalent:

1. There exists a field-isomorphism $\Phi: P(A) \rightarrow P(\varphi(A))$ such that $\Phi(a)=\varphi(a)$ for all $a \in A$.
2. For any vector space $V \neq\{0\}$ over K and any vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.
3. For some vector space $V \neq\{0\}$ over K and some vector space $W \neq\{0\}$ over L there exists an additive function $f: V \rightarrow W$ such that $f \neq 0$ and $f(a x)=\varphi(a) f(x)$ for all $a \in A$ and $x \in V$.

Proof. Assume 1. Let B be a basis of V over $P(A), V \ni x=\sum_{b \in B} \lambda_{b}(x) b$, $w_{0} \in W \backslash\{0\}$, then $f: V \rightarrow W$ defined by $f(x)=\Phi\left(\sum_{b \in B} \lambda_{b}(x)\right) w_{0}$ is nonzero, additive, and $f(a x)=\varphi(a) f(x), a \in A, x \in V$.

Assume 3. $P(A)$ is the set of all rational functions

$$
R\left(a_{1}, \ldots, a_{n}\right)=\frac{r\left(a_{1}, \ldots, a_{n}\right)}{s\left(a_{1}, \ldots, a_{n}\right)}
$$

with polynomials $r\left(X_{1}, \ldots, X_{n}\right), s\left(X_{1}, \ldots, X_{n}\right) \in P\left[X_{1}, \ldots, X_{n}\right]$ such that $s\left(a_{1}, \ldots, a_{n}\right) \neq 0$, for $n \in \mathbb{N}$. Standard arguments prove that $f\left(R\left(a_{1}, \ldots, a_{n}\right) x\right)=R\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right) f(x)$ for all rational expressions $R\left(a_{1}, \ldots, a_{n}\right) \in P(A)$.

Assume 3. $P(A)$ is the set of all rational functions

$$
R\left(a_{1}, \ldots, a_{n}\right)=\frac{r\left(a_{1}, \ldots, a_{n}\right)}{s\left(a_{1}, \ldots, a_{n}\right)}
$$

with polynomials $r\left(X_{1}, \ldots, X_{n}\right), s\left(X_{1}, \ldots, X_{n}\right) \in P\left[X_{1}, \ldots, X_{n}\right]$ such that $s\left(a_{1}, \ldots, a_{n}\right) \neq 0$, for $n \in \mathbb{N}$. Standard arguments prove that $f\left(R\left(a_{1}, \ldots, a_{n}\right) x\right)=R\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right) f(x)$ for all rational expressions $R\left(a_{1}, \ldots, a_{n}\right) \in P(A)$.

The function $\Phi: P(A) \rightarrow P(\varphi(A))$ defined by

$$
\Phi\left(R\left(a_{1}, \ldots, a_{n}\right)\right)=R\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right)
$$

Ful Screen
is well defined, bijective, and a homomorphism.

4 Remark

Consider two fields K and L over the same prime field P, a non-empty subset A of K, and an injective mapping $\varphi: A \rightarrow L$. Moreover, there exists a field isomorphism $\Phi: P(A) \rightarrow P(\varphi(A))$ such that $\Phi(a)=\varphi(a)$ for all $a \in A$.

Then for any vector space V over K, any vector space W over L, and any basis B of V over $P(A)$, as well as any mapping $\alpha^{\prime}: B \rightarrow W$ there is exactly one additive function $\alpha: V \rightarrow W$ with $\left.\alpha\right|_{B}=\alpha^{\prime}$ and $\alpha(a x)=$ $\Phi(a) \alpha(x)$ for all $x \in V$ and all $a \in P(A)$.

The proof is similar to the first part of the previous proof.

Solving the general linear functional equation

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} a_{i} x_{i}+a_{0}\right)=\sum_{i=1}^{n} A_{i} f\left(x_{i}\right)+A_{0}, \quad x_{i} \in V, 1 \leq i \leq n \tag{1}
\end{equation*}
$$

for $f: V \rightarrow W$, where V is a vector space over K and W is a vector space over L, with given scalars $a_{i} \in K$ and $A_{i} \in L, 1 \leq i \leq n, n \geq 2$, and given vectors $a_{0} \in V$ and $A_{0} \in W$.

Assume that $a_{i} \neq 0$ for $1 \leq i \leq n$. We define mappings $f_{i}: V \rightarrow W$, $0 \leq i \leq n$, by

$$
f_{0}(x)=f\left(x+a_{0}\right)-A_{0}, \quad f_{i}(x)=A_{i} f\left(\frac{x}{a_{i}}\right), 1 \leq i \leq n
$$

then (1) is equivalent to

$$
\begin{equation*}
f_{0}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \tag{2}
\end{equation*}
$$

Let $g_{i}(x)=f_{i}(x)-f_{i}(0), 0 \leq i \leq n$, then $g_{i}(0)=0,0 \leq i \leq n$, and

Home Page

Title Page

Let $g_{i}(x)=f_{i}(x)-f_{i}(0), 0 \leq i \leq n$, then $g_{i}(0)=0,0 \leq i \leq n$, and

$$
\begin{equation*}
g_{0}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} g_{i}\left(x_{i}\right) \tag{3}
\end{equation*}
$$

since $f_{0}(0)=\sum_{i=1}^{n} f_{i}(0)$.
From $g_{i}(0)=0$ for all i we obtain by (3) that $g_{j}(x)=g_{0}(x), x \in V$, $1 \leq j \leq n$. Therefore, the function $\alpha:=g_{0}$ is additive.

Let $g_{i}(x)=f_{i}(x)-f_{i}(0), 0 \leq i \leq n$, then $g_{i}(0)=0,0 \leq i \leq n$, and

$$
\begin{equation*}
g_{0}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} g_{i}\left(x_{i}\right) \tag{3}
\end{equation*}
$$

since $f_{0}(0)=\sum_{i=1}^{n} f_{i}(0)$.
From $g_{i}(0)=0$ for all i we obtain by (3) that $g_{j}(x)=g_{0}(x), x \in V$, $1 \leq j \leq n$. Therefore, the function $\alpha:=g_{0}$ is additive. Defining $\alpha_{i}=f_{i}(0), 0 \leq i \leq n$, we have proven the following consequence of Theorem 3.

5 Corollary

If $f: V \rightarrow W$ satisfies (1) with $a_{i} \neq 0$ for $1 \leq i \leq n$, then there exist constant vectors $\alpha_{i} \in W, 0 \leq i \leq n$, and an additive mapping $\alpha: V \rightarrow$ W, such that

$$
f\left(x+a_{0}\right)-A_{0}=\alpha(x)+\alpha_{0}, \quad A_{i} f\left(\frac{x}{a_{i}}\right)=\alpha(x)+\alpha_{i}, 1 \leq i \leq n, \quad x \in V
$$

We immediately get from (4)

$$
\begin{equation*}
f(x)=\alpha(x)+\alpha_{0}^{\prime}, \quad \alpha_{0}^{\prime}=\alpha_{0}+A_{0}-\alpha\left(a_{0}\right) \tag{5}
\end{equation*}
$$

$A_{i} \alpha_{0}^{\prime}=\alpha_{i}, 1 \leq i \leq n$, and

$$
\begin{equation*}
\alpha\left(a_{i} x\right)=A_{i} \alpha(x), \quad x \in V, 1 \leq i \leq n . \tag{6}
\end{equation*}
$$

Then (1) reads as

$$
\sum_{i=1}^{n} A_{i} \alpha\left(x_{i}\right)+\alpha_{0}^{\prime}+\alpha\left(a_{0}\right)=\sum_{i=1}^{n} A_{i} \alpha\left(x_{i}\right)+A \alpha_{0}^{\prime}+A_{0}
$$

where $A:=\sum_{i=1}^{n} A_{i}$. Consequently

$$
\begin{equation*}
(1-A) \alpha_{0}^{\prime}=A_{0}-\alpha\left(a_{0}\right) \tag{7}
\end{equation*}
$$

This way we have proven one implication in

6 Theorem

Let V and W be vector spaces over K and L, respectively, $a_{i} \in K \backslash\{0\}$ and $A_{i} \in L, 1 \leq i \leq n, n \in \mathbb{N}, n \geq 2$, and $f: V \rightarrow W$. Moreover let $a_{0} \in V$ and $A_{0} \in W$. Then the following assertions are equivalent:

1. The function $f: V \rightarrow W$ is a solution of (1).
2. There exists an additive function $\alpha: V \rightarrow W$ and a constant $\alpha_{0}^{\prime} \in W$, such that f is of the form (5), and $\alpha, \alpha_{0}^{\prime}$ satisfy (6) and (7).

Constant solutions are of the form (5) with $\alpha=0$. Thus (1) has constant solutions iff $(1-A) \alpha_{0}^{\prime}=A_{0}$. More exactly in the case $A \neq 1$ this constant is unique and given by $\alpha_{0}^{\prime}=\frac{1}{1-A} A_{0}$. If $A=1$ and $A_{0}=0$ the constant α_{0}^{\prime} is arbitrary. If $A=1$ and $A_{0} \neq 0$ there are no constant solutions.

Non-constant solutions

This means that (6) has non-zero additive solutions.

Lemma 7

Let V and W be vector spaces over K and L, respectively, and assume that $\alpha: V \rightarrow W$ is additive, different from 0 , and satisfies (6) with $a_{i} \neq 0$ for all $1 \leq i \leq n$. Then for all i, j we have $a_{i}=a_{j}$ if, and only if $A_{i}=A_{j}$. Thus with $S_{a}:=\left\{a_{i} \mid 1 \leq i \leq n\right\}$ and $S_{A}:=\left\{A_{i} \mid 1 \leq i \leq n\right\}$ the mapping $\varphi: S_{a} \rightarrow S_{A}, \varphi\left(a_{i}\right):=A_{i}$, is well-defined and bijective.

Proof. Assume $a_{i}=a_{j}$. Then $A_{i} \alpha(x)=\alpha\left(a_{i} x\right)=\alpha\left(a_{j} x\right)=A_{j} \alpha(x)$ for all x. Thus $\left(A_{i}-A_{j}\right) \alpha=0$ implying $A_{i}-A_{j}=0$ as $\alpha \neq 0$.

Now assume $A_{i}=A_{j}$. Then $0=A_{i} \alpha(x)-A_{j} \alpha(x)=\alpha\left(a_{i} x\right)-\alpha\left(a_{j} x\right)=$ $\alpha\left(\left(a_{i}-a_{j}\right) x\right)$ for all x. If $a_{i} \neq a_{j}$ this would imply $\alpha=0$, a contradiction.

Now we describe all situations guaranteeing the existence of non-constant solutions of (1). Since a solution f of (1) is non-constant iff the corresponding additive function α is non-constant, we may assume that Lemma 7 holds true which ensures that we may apply Remark 4.

8 Theorem

Let $V \neq\{0\}$ and $W \neq\{0\}$ be vector spaces over K and L, respectively. Assume that K and L have the same prime field P. Assume moreover (the necessary condition for the existence of a non-trivial additive α), that there is a field isomorphism $\Phi: P\left(a_{1}, a_{2}, \ldots, a_{n}\right) \rightarrow$ $P\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ such that $\Phi\left(a_{i}\right)=A_{i}$ for all $1 \leq i \leq n, n \geq 2$. Then the following holds true.

1. If $A:=\sum_{i=1}^{n} A_{i} \neq 1$, then there are non-constant (and also constant) solutions of (1). If we fix a basis B of V over $P\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and if we choose any mapping $\alpha^{\prime}: B \rightarrow W$ in order to define α as in Remark 4, then the function $f=\alpha+\frac{1}{1-A}\left(A_{0}-\alpha\left(a_{0}\right)\right)$ is a solution of (1) which is not constant iff $\alpha^{\prime} \neq 0$.
2. If $A=1$ and $a_{0} \neq 0$ we may fix a basis B of V over $P\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{0} \in B$ and define α with any $\alpha^{\prime}: B \rightarrow W$ such that $\alpha^{\prime}\left(a_{0}\right)=$ A_{0} and arbitrarily on $B \backslash\left\{a_{0}\right\}$. Then for each of these α the sum $\alpha+\alpha_{0}^{\prime}$ with arbitrary $\alpha_{0}^{\prime} \in W$ satisfies (1). If $A_{0} \neq 0$, this α is different from 0 and thus f non-constant. If $A_{0}=0$ and $B \backslash\left\{a_{0}\right\} \neq \emptyset$ we get non-constant solutions by choosing some $b \in B \backslash\left\{a_{0}\right\}$ and choosing $\alpha^{\prime}(b) \neq 0$.

If $B=\left\{a_{0}\right\}$ and $A_{0}=0$ there are only constant solutions.
3. If $A=1$ and $a_{0}=0$ there is no solution at all for $A_{0} \neq 0$. If $A_{0}=0$ we may choose α as in 1 . and an arbitrary $\alpha_{0}^{\prime} \in W$ which results in a solution $f=\alpha+\alpha_{0}^{\prime}$ of (1).

For $V=K, W=L$ this implies

9 Corollary

Consider two fields K and L over the same prime field $P, a_{i} \in K$ and $A_{i} \in L, 0 \leq i \leq n, n \in \mathbb{N}, n \geq 2$, where $1=\sum_{i=1}^{n} A_{i}$ and $a_{i} \neq 0$ for $1 \leq i \leq n$. The following two assertions are equivalent:

1. There exists a non constant solution $f: K \rightarrow L$ of (1).
2. There exists an additive mapping $\alpha: K \rightarrow L$ such that $\alpha\left(a_{0}\right)=$ A_{0} and the restriction $\Phi:=\left.\alpha\right|_{P\left(a_{1}, \ldots, a_{n}\right)}$ is a field-isomorphism $P\left(a_{1}, \ldots, a_{n}\right) \rightarrow P\left(A_{1}, \ldots, A_{n}\right)$ satisfying $\Phi\left(a_{i}\right)=A_{i}, 1 \leq i \leq n$.

The case $n=1$

The assumption that all $a_{i} \neq 0$ in Theorem 6 is not very important. If, for example, $a_{n}=0$, (1) with $x_{1}=x_{2}=\ldots=x_{n-1}$ shows that either f is constant or $A_{n}=0$, which gives (1) with $n-1$ instead of n.

Go Back

The case $n=1$

The assumption that all $a_{i} \neq 0$ in Theorem 6 is not very important. If, for example, $a_{n}=0$, (1) with $x_{1}=x_{2}=\ldots=x_{n-1}$ shows that either f is constant or $A_{n}=0$, which gives (1) with $n-1$ instead of n.

The case $n=1$ however is of different taste. In this case (1) is a functional equation in one variable of the form $f(\varphi(x))=\psi(f(x))$ with affine functions φ and ψ. To investigate solvability and general solution in this case asks for the analysis of the fixed points of the iterates of that functions.

Here $\varphi(x)$ is of the form $a x+v$, for $a \in K^{*}$ and $x, v \in V$. We will indicate this φ as (a, v). The set $\left\{(a, v) \mid a \in K^{*}, v \in V\right\}$ of all these φ together with multiplication $(a, v)\left(a^{\prime}, v^{\prime}\right)=\left(a a^{\prime}, a v^{\prime}+v\right)$ can be considered as a subgroup of the group of all affine mappings on V. The mapping $((a, v), x) \mapsto a x+v$ defines an action of this group on V.

Now (1) for $n=1$ reads as

$$
\begin{equation*}
f\left(\left(a_{1}, a_{0}\right) x\right)=\left(A_{1}, A_{0}\right) f(x), \quad x \in V . \tag{8}
\end{equation*}
$$

If $a_{1}=1$, then we assume that $a_{0} \neq 0$ since $(1,0)$ is the identity on V. Let G and H be the cyclic groups generated by $\left(a_{1}, a_{0}\right)$ and $\left(A_{1}, A_{0}\right)$, respectively.

10 Theorem

Let V and W be vector spaces over K and L, respectively, $a_{1} \in K^{*}$, $A_{1} \in L^{*}, a_{0} \in V$ and $A_{0} \in W$.

1. If $f: V \rightarrow W$ satisfies (8), then for any $x \in V$ the function f maps the G-orbit $G(x)$ surjectively on the H-orbit $H(f(x))$. If, moreover, $\left(a_{1}, a_{0}\right)^{n} x=x$ for some $n \in \mathbb{Z}$, then $\left(A_{1}, A_{0}\right)^{n} f(x)=f(x)$.
2. In order to construct solutions $f: V \rightarrow W$ of (8), determine a system of representatives of the G-orbits on V. On each G-orbit we define f separately in the following way. If the G-orbit of a representative x is infinite, choose any $y \in W$ and define $f(x):=y$. If the size of the G-orbit of x is $n \in \mathbb{N}$, then choose some $y \in W$ such that the size of the H-orbit of y is a divisor of n, and define $f(x):=y$. On the remaining elements of $G(x)$ define $f\left(x^{\prime}\right)=\left(A_{1}, A_{0}\right)^{n} y$ if x^{\prime} is of the form $\left(a_{1}, a_{0}\right)^{n} x$ for some $n \in \mathbb{Z}$. Then f satisfies (8).

This yields the following description of the situations when (8) has constant or non-constant solutions.

1. If $a_{1}=1$ and $\operatorname{char}(K)=p$, then there exist solutions of (8) if and only if there exist H-orbits on W of size 1 or p. If there are no H-orbits of size p but one orbit of size 1 , then we have only constant solutions of (8).
2. If $a_{1}=1$ and $\operatorname{char}(K)=0$, then there exist both constant and nonconstant solutions of (8).
3. If a_{1} is of infinite order, then there exist both constant and non-constant solutions of (8).
4. If $a_{1} \neq 1$ is of finite order, then there exist solutions of (8) if and only if $A_{1} \neq 1$. In this situation there exist non-constant solutions of (8) if and only if there exist H-orbits on W of size $d>1$ such that d is a divisor of $\operatorname{ord}\left(a_{1}\right)$.

Contents

Home Page

Titte Page

Contents

4 \triangleleft
\qquad
\square
Non-trivial additive functions between vector spaces over not necessarily equal fields
The general linear equation
A generalization
Additive functions between vector spaces
Solving the general linear functional equation Non-constant solutions
Page 21 of 21
The case $n=1$

