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The general linear equation

flax+by+c)=Af(x)+Bf(y)+C

has been considered in section 2.2.6 of Janos Aczél’s Lectures on
functional equations and their applications, Academic Press, 1966, for
functions from R to R and,

in more detail, for functions from R” to R in section 13.10 of Marek
Kuczma’s book An introduction to the theory of functional equations and
inequalities, Birkhauser, 2009 (2nd ed.).
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A generalization

Here we consider a generalization, i.e., the equation
f(Z Clixi+ao) =) Aif(x) + Ao
i=1 i=1

with f:V — W and vector spaces V,W over not necessarily identical
fields K and L.

The equation with Ay, ag = 0 was considered by Paolo Leonetti and Jens
Schwaiger in The general linear equation on open connected sets, in
Acta Math. Hung. vol. 161, number 1, pp. 201-211, (2020).

The last paper was motivated by D. Gtazowska et al., Commutativity of
integral quasiarithmetic means on measure spaces, in Acta Math.
Hung., vol. 153, number 2, pp. 350-355, (2017), where all continuous
solutions of the equation f(ax+by) =af(x) +bf(y) when x,y > 0 were
found.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a

field L where V,W == {0}. The following assertions are equivalent:
1. charK = charlL.
2. There exists an additive function f:V — W such that f # 0.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a

field L where V,W == {0}. The following assertions are equivalent:
1. charK = charlL.
2. There exists an additive function f:V — W such that f # 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L,
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a

field L where V,W == {0}. The following assertions are equivalent:
1. charK = charlL.
2. There exists an additive function f:V — W such that f # 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L,V and W are vector spaces over P, let B be a basis of V over P, B # 0,
wo € W\ {0},
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a

field L where V,W == {0}. The following assertions are equivalent:
1. charK = charlL.
2. There exists an additive function f:V — W such that f # 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L,V and W are vector spaces over P, let B be a basis of V over P, B # 0,
wo € W\ {0}, the P-linear function f:V — W defined by f(b) = wy for all
b € B is additive and non-zero.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a

field L where V,W == {0}. The following assertions are equivalent:

' | 1. charK = charL.
| 2. There exists an additive function f:V — W such that f # 0.

| Proof. Assume 1. holds true: Let P be the common prime field of K and

| L,V and W are vector spaces over P, let B be a basis of V over P, B # 0,

wo € W\ {0}, the P-linear function f:V — W defined by f(b) = wy for all

| b € Bis additive and non-zero.

| Assume 2. holds true: f:V — W non-zero and additive, v, € V such that

| wo = f(vo) # 0.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a

field L where V,W == {0}. The following assertions are equivalent:
1. charK = charlL.
2. There exists an additive function f:V — W such that f # 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L,V and W are vector spaces over P, let B be a basis of V over P, B # 0,
wo € W\ {0}, the P-linear function f:V — W defined by f(b) = wy for all
b € B is additive and non-zero.

Assume 2. holds true: f:V — W non-zero and additive, vy € V such that
WwWo = f(V()) 7& 0. If charK = p > O, then 0 = f(O) — f((p 1K)V()) = (p .
1) f(vo) = (p- 1) wo.
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Additive functions between vector spaces

1 Theorem
Let V be a vector space over a field K and W a vector space over a

field L where V,W == {0}. The following assertions are equivalent:
1. charK = charlL.
2. There exists an additive function f:V — W such that f # 0.

Proof. Assume 1. holds true: Let P be the common prime field of K and
L,V and W are vector spaces over P, let B be a basis of V over P, B # 0,
wo € W\ {0}, the P-linear function f:V — W defined by f(b) = wy for all
b € B is additive and non-zero.

Assume 2. holds true: f:V — W non-zero and additive, vy € V such that
wo = f(vo) #0. IfcharK =p > 0,then 0 = f(0) = f((p-1x)vo) = (p-
1) f(vo) = (p- 1)wo. If charK = 0, then 0 # wo = f(vo) = f(n-Lvg) =
(n- lL)f(%K Vo), for all positive integers n, whencen-1; #0foralln. [
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Lemma 2
Consider two vector spaces V and W over K and L, respectively, and

a subset 0 # A C K together with a mapping ¢:A — L. If a non-trivial
additive function f:V — W satisfies f(ax) = ¢(a)f(x) foralla € A and
x € X, then @ is injective.
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3 Theorem
Consider two fields K and L over the same prime field P, a non-empty

subset A of K, and an injective mapping @:A — L. Then the following

assertions are equivalent:

1. There exists a field-isomorphism ®:P(A) — P(¢@(A)) such that
d(a) = @(a) foralla € A.

2. For any vector space V # {0} over K and any vector space W # {0}
over L there exists an additive function f:V — W such that f £ 0
and f(ax) = @(a)f(x)forallac Aandx € V.

3. For some vector space V # {0} over K and some vector space
W #£ {0} over L there exists an additive function f:V — W such
that f 20 and f(ax) = ¢(a)f(x) forallac Aandx € V.

Proof. Assume 1. Let B be a basis of V over P(A),
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3 Theorem
Consider two fields K and L over the same prime field P, a non-empty

subset A of K, and an injective mapping @:A — L. Then the following

assertions are equivalent:

1. There exists a field-isomorphism ®:P(A) — P(¢@(A)) such that
d(a) = @(a) foralla € A.

2. For any vector space V # {0} over K and any vector space W # {0}
over L there exists an additive function f:V — W such that f £ 0
and f(ax) = @(a)f(x)forallac Aandx € V.

3. For some vector space V # {0} over K and some vector space
W #£ {0} over L there exists an additive function f:V — W such
that f 20 and f(ax) = ¢(a)f(x) forallac Aandx € V.

Proof. Assume 1. Let B be a basis of V over P(A),V 3 x =Y ,c5An(x)D,
wo € W\ {0}, then f:V — W defined by f(x (ZbeB Ap(x )Wo is non-
zero, additive, and f(ax) = ¢(a)f(x), a € A xeV.
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Assume 3. P(A) is the set of all rational functions

r(ay,...,ay)
s(ay,...,ay)

R(ay,...,a,) =

with polynomials r(Xi,...,X,),s(Xi,...,X,) € P[X;,...,X,| such that
s(ay,...,a,) # 0, for n € N.  Standard arguments prove that
f(R(ay,...,a,)x) = R(@(ay),...,¢(a,))f(x) for all rational expressions
R(al,...,an) c P(A)
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Assume 3. P(A) is the set of all rational functions

R(ay,...,a,) =

with polynomials r(Xi,...,X,),s(Xi,...,X,) € P[X;,...,X,| such that
s(ay,...,a,) # 0, for n € N.  Standard arguments prove that
f(R(ay,...,a,)x) = R(@(ay),...,¢(a,))f(x) for all rational expressions
R(al,...,an) c P(A)

The function ®: P(A) — P(¢(A))defined by

d(R(ay,...,a,)) =R(@(a;),...,0(a,))

Is well defined, bijective, and a homomorphism. []
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4 Remark
Consider two fields K and L over the same prime field P, a non-empty

subset A of K, and an injective mapping ¢:A — L. Moreover, there
exists a field isomorphism ®: P(A) — P(¢(A)) such that ®(a) = ¢(a)
foralla € A.

Then for any vector space V over K, any vector space W over L, and
any basis B of V over P(A), as well as any mapping «’: B — W there
is exactly one additive function a:V — W with a|p = ' and a(ax) =
d(a)o(x) forallx eV andalla € P(A).

The proof is similar to the first part of the previous proof.
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Solving the general linear functional equation

| (Za,xl—kag) ZA,f x;) + Ao, x, eV, 1<i<n, (1)

| for 1V — W where V is a vector space over K and W is a vector space

over L, with given scalarsa;, €c K and A; € L, 1 <i<n,n > 2, and given

| vectorsag €V and Ap € W.

| Assume that a; # 0 for 1 <i < n. We define mappings f;:V — W,
| 0<i<n,by

X

| folx) = f(x+ap) —Ao,  filx) =Af(=), 1<i<n,

a;
|

then (1) is equivalent to
|

| p(X) = LAt @)
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Let g;,(x) = fi(x) — £i(0), 0 <i<mn,then g;(0) =0,0 <i<n, and
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Let gi(x) = fi(x) — fi(0), 0 < i <n,then g;(0)=0,0<i<n,and

80 (Zn;xi) — igi(xi)

| since fo(0) = X2, fi(0)

From g;(0) = O for all i we obtain by (3) that g;(x) = go(x), x €V,
1 < j <n. Therefore, the function o := g is additive.
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Let g;(x) = fi(x) — £i(0), 0 <i<n, then g;(0) =0,0 <i<n,and
80 (in) — Zgi(xi) (3)
i=1 i=1

since fo(0) = X1 fi(0).

From g;(0) = O for all i we obtain by (3) that g;(x) = go(x), x €V,

1 < j <n. Therefore, the function o := g¢ is additive. Defining

o; = f;(0), 0 <i < n, we have proven the following consequence of
Theorem 3.

5 Corollary
If f:V — W satisfies (1) with a; # 0 for 1 < i < n, then there exist

constant vectors o; € W, 0 <i < n, and an additive mapping o:V —
W, such that

f(x+a0)—A0:OC(X)—|—ao, Alf(ai):a(x)_FaH lélénv xeV.

(4)
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We immediately get from (4)

f(x)

OC(X)—|—OC(/), OC(/): O —|—A0—OC(CI()),

Aioy=0oy, 1 <i<n,and

Then (1) reads as

l

o(ax) =Aa(x), xeV, 1<i<n.

n

AiOC(Xl') a4 OC(/) aiE OC(CI()) — ZA,‘OC(Xi) —|—A(X6 —|—A(),
=1

i=1

where A :=Y" | A;. Consequently

(1 —A)a(’) = Ap— OC(CI()).
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This way we have proven one implication in

6 Theorem
Let V and W be vector spaces over K and L, respectively, a; € K\ {0}

andA; €L, 1<i<n,neN,n>2,and f:V — W. Moreover letay € V

and Ay € W. Then the following assertions are equivalent:

1. The function f:V — W is a solution of (1).

2. There exists an additive function a: V — W and a constant o), € W,
such that f is of the form (5), and «, ¢, satisfy (6) and (7).

Constant solutions are of the form (5) with &« = 0. Thus (1) has constant
solutions iff (1 —A) = Ay. More exactly in the case A # 1 this constant
is unique and given by oy = — A. If A =1 and A, = 0 the constant a,
is arbitrary. If A =1 and Ay # 0 there are no constant solutions.
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Non-constant solutions

This means that (6) has non-zero additive solutions.

Lemma 7
Let V and W be vector spaces over K and L, respectively, and assume

that a: V — W is additive, different from 0, and satisfies (6) with a; # 0
forall 1 <i<mn. Thenforalli,j we have a; =a; if, and only if A; = A;.

Thuswith S, :={a;| 1 <i<n}and S, :={A; |1 <i<n} the mapping

¢©:S, — Sa, ©(a;) == A;, is well-defined and bijective.

Proof. Assume a; =a;. Then A;a(x) = a(aix) = a(ax) = A;0(x) for
all x. Thus (A;—A;)a =0implyingA;—A; =0as a # 0.

Now assume A; =A;. Then 0 =A;0(x) —A;a(x) = ot(aix) — a(ax) =
o((a; —a;)x) for all x. If a; # a; this would imply o = 0, a contradiction.
[]
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Now we describe all situations guaranteeing the existence of
non-constant solutions of (1). Since a solution f of (1) is non-constant iff
the corresponding additive function o is non-constant, we may assume
that Lemma 7 holds true which ensures that we may apply Remark 4.

8 Theorem
Let V # {0} and W # {0} be vector spaces over K and L, respectively.

Assume that K and L have the same prime field P. Assume
moreover (the necessary condition for the existence of a non-trivial
additive «), that there is a field isomorphism ®:P(a;,as,...,a,) —
P(A(,A;,...,A,) such that ®(q;) = A; forall 1 <i<n, n>2. Then
the following holds true.

1. IfA:=Y" A; # 1, then there are non-constant (and also constant)
solutions of (1). If we fix a basis B of V over P(a,az,...,a,) and
if we choose any mapping o’:B — W in order to define o as in
Remark 4, then the function f = o+ — (Ao — o(ay)) is a solution
of (1) which is not constant iff a’ # 0.
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2. If A=1 and ay # 0 we may fix a basis B of V over P(ay,az,...,a,)
with ay € B and define o with any a’:B — W such that a'(ag) =
Ao and arbitrarily on B\ {ap}. Then for each of these a the sum
o + oy, with arbitrary o) € W satisfies (1). If Ay # 0, this « is different
from 0 and thus f non-constant. If A =0 and B\ {ao} # 0 we get
non-constant solutions by choosing some b € B\ {ay} and choosing

a'(b) #£ 0.
If B={ap} and Ap = 0 there are only constant solutions.
3. If A =1 and ay = 0 there is no solution at all for Ay # 0. If Ag =0 we

may choose « as in 1. and an arbitrary ¢, € W which results in a
solution f = o+ o, of (1).
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ForV = K, W = L this implies

9 Corollary

1 <i<n. The following two assertions are equivalent:

1. There exists a non constant solution f: K — L of (1).

2. There exists an additive mapping a:K — L such that o/(ay)

P(ay,...,a,) — P(Ay,...,A,) satisfying ®(a;,) =A;, 1 <i<n.

Consider two fields K and L over the same prime field P, a; € K and
A;eL, 0<i<n,neN, n>2 where1l=Y)",A; and a; # 0 for

Ap and the restriction ® := |py, . 4, is a field-isomorphism
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The casen =1

The assumption that all a; #= 0 in Theorem 6 is not very important. If, for
example, a, =0, (1) with x; =x, = ... = x,,_| shows that either f is
constant or A,, = 0, which gives (1) with n — 1 instead of n.
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The casen =1

The assumption that all a; #= 0 in Theorem 6 is not very important. If, for
example, a, =0, (1) with x; =x, = ... = x,,_| shows that either f is
constant or A,, = 0, which gives (1) with n — 1 instead of n.

The case n = 1 however is of different taste. In this case (1) is a
functional equation in one variable of the form f(¢@(x)) = w(f(x)) with
affine functions ¢ and v. To investigate solvability and general solution
In this case asks for the analysis of the fixed points of the iterates of that
functions.

Here ¢(x) is of the form ax+v, for a € K* and x,v € V. We will indicate
this ¢ as (a,v). The set {(a,v) | a € K*, v € V} of all these ¢ together
with multiplication (a,v)(a’,v') = (ad’,av’ +v) can be considered as a
subgroup of the group of all affine mappings on V. The mapping
((a,v),x) — ax+ v defines an action of this group on V.
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Now (1) for n = 1 reads as

f((ar,a0)x) = (A1,A0)f(x), x€V.

| If a; = 1, then we assume that a( # 0 since (1,0) is the identity on V.

Let G and H be the cyclic groups generated by (a;,ap) and (A1,Ap),
| respectively.

(8)
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10 Theorem
Let V and W be vector spaces over K and L, respectively, a; € K*,

AieL*, apeVand Ay e W.

1. If £:V — W satisfies (8), then for any x € V the function f maps
the G-orbit G(x) surjectively on the H-orbit H(f(x)). If, moreover,
(ar,ap)"x = x for some n € Z, then (A1,Ap)" f(x) = f(x).

2. In order to construct solutions f:V — W of (8), determine a system

of representatives of the G-orbits on V. On each G-orbit we define
f separately in the following way. If the G-orbit of a representative x
is infinite, choose any y € W and define f(x) :=y. If the size of the
G-orbit of x is n € N, then choose some y € W such that the size
of the H-orbit of y is a divisor of n, and define f(x) :=y. On the
remaining elements of G(x) define f(x') = (A1,4¢)"y if x" is of the
form (ay,ap)"x for some n € Z. Then f satisfies (8).
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This yields the following description of the situations when (8) has
constant or non-constant solutions.

| 1. If a; = 1 and char (K) = p, then there exist solutions of (8) if and only

| If there exist H-orbits on W of size 1 or p. If there are no H-orbits of

size p but one orbit of size 1, then we have only constant solutions of

(@)

2. If a; = 1 and char(K) = 0, then there exist both constant and non-
| constant solutions of (8).

| 3. If ay is of infinite order, then there exist both constant and non-constant

. solutions of (8).

| 4. If a; # 1 is of finite order, then there exist solutions of (8) if and only if

A; # 1. In this situation there exist non-constant solutions of (8) if and

only if there exist H-orbits on W of size d > 1 such that d is a divisor

I of ord(ay).
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