

Generalized Stirling Permutations and Iteration Theory

Joint work with Wojciech Jabłoński

Harald Fripertinger Karl-Franzens-Universität Graz 60-th ISFE, June 9–15, 2024, Kościelisko, Poland

Using generalized Stirling permutations, I will present a combinatorial proof that a certain family of power series suggested by Wojciech Jabłoński is indeed a two-parameter iteration group.

Iteration Groups

[Home Page](http://https://imsc.uni-graz.at/fripertinger/) ◀◀ ▶▶ ◀ ▶ *Page 2 of 15* $\mathbb K$ be a field of characteristic 0, (*G*,∗) a group, $\mathbb{K}[[x]]$ the ring of formal powerseries $f(x) = \sum_{n \geq 0} a_n x^n$, $a_n \in \mathbb{K}$, $\Gamma := \{ g(x) \in \mathbb{K}[[x]] \mid g(x) = \sum_{n \geq 1} b_n x^n, \},$ for $f \in \mathbb{K}[[x]]$, $g \in \Gamma$, the composition $(f \circ g) = \sum_{n \geq 0} a_n [g(x)]^n$. An iteration group is a family $(F_g(x))_{g\in G}$ of elements in Γ such that $F_{g*g'}(x) = (F_g \circ F_{g'})(x)$, or $F(g*g', x) = F(g, F(g', x))$, $g, g' \in G$, where $F(g, x) = F_g(x)$. Thus it is a solution of the translation equation. E.g. $K = \mathbb{C}$ and $G = (\mathbb{C}, +)$ was studied by L. Reich.

Go Back

Generalized Factorial

Title Page

◀◀ ▶▶

◀ ▶

Page 3 of 15

Go Back

 $\ell \geq 1$ a positive integer, generalized factorial

$$
(k\ell+1)!_{\ell} := \prod_{j=0}^k (j\ell+1) = 1 \cdot (\ell+1) \cdots (k\ell+1), \qquad k \in \mathbb{Z},
$$

if $k < 0$, then $(k\ell+1)!_{\ell} = 1$, the empty product, if $\ell = 1$, then $(k\ell + 1)!_{\ell} = (k + 1)!$.

Quit

◀◀ ▶▶

◀ ▶

Page 4 of 15

Go Back

A non-commutative two-parameter Iteration Group

W. Jabłoński studies iteration groups where G is different from \mathbb{K} .

 $\ell \geq 1$ a positive integer, $G := (\mathbb{K}^\times \times \mathbb{K}, \diamond),$

> $(y_1, y_2) \diamond (z_1, z_2) = (y_1z_1, y_1z_2 + y_2z_1^{\ell+1})$ $\binom{l+1}{1}, \quad (y_1, y_2), (z_1, z_2) \in G$

G is not commutative since $\ell + 1 > 2$.

W.J. proves in

An explicit example of an iteration group in the ring of formal power series, in Aequationes Mathematicae **98**, Nr. 3, 837–850, (2024)

the following theorem.

The family
$$
(F_{(z_1,z_2)}^{(\ell)}(x))_{(z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K}}
$$
 given by
\n
$$
F_{(z_1,z_2)}^{(\ell)}(x) = \sum_{n\geq 0} \left(\frac{((n-1)\ell+1)!_{\ell}}{n!} \cdot \frac{z_2^n}{z_1^{n-1}} \right) x^{n\ell+1}, \quad (z_1,z_2) \in \mathbb{K}^{\times} \times \mathbb{K},
$$
\nis a non-commutative, two-parameter iteration group in $\mathbb{K}[[x]]$ if and only if

$$
\frac{((n-1)\ell+1)!\ell}{(n-k)!((k-1)\ell+1)!\ell} = \sum_{c=(c_1,\ldots,c_{k\ell+1})} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!\ell}{c_j!} \qquad (2)
$$

holds true for all $n \in \mathbb{N}$ and $0 \leq k \leq n$, where *c* is a composition of *n*−*k*, i.e. c_1 + \cdots + $c_{k\ell+1}$ = *n*−*k* and all c_i are non-negative integers.

Title Page

UNI
GRAZ

◀◀ ▶▶

◀ ▶

Page 5 of 15

The family
$$
\left(F_{(z_1,z_2)}^{(\ell)}(x)\right)_{(z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K}}
$$
 given by\n $F_{(z_1,z_2)}^{(\ell)}(x) = \sum_{n\geq 0} \left(\frac{((n-1)\ell+1)!_{\ell}}{n!} \cdot \frac{z_2^n}{z_1^{n-1}}\right) x^{n\ell+1}, \quad (z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K},$ \n\nis a non-commutative, two-parameter iteration group in $\mathbb{K}[\![x]\!]$ if and only if\n $\left((n-1)\ell+1\right)_{\ell}$ \n $\frac{k\ell+1}{\ell} \left((c-1)\ell+1\right)_{\ell}$

$$
\frac{((n-1)\ell+1)!_{\ell}}{(n-k)!((k-1)\ell+1)!_{\ell}} = \sum_{c=(c_1,\ldots,c_{k\ell+1})} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!_{\ell}}{c_j!} \qquad (2)
$$

holds true for all $n \in \mathbb{N}$ and $0 \leq k \leq n$, where *c* is a composition of *n*−*k*, i.e. c_1 + \cdots + $c_{k\ell+1}$ = *n*−*k* and all c_i are non-negative integers.

 $\ell = 1$: equation [\(2\)](#page-6-0) is true.

Title Page

<u>uni</u>

◀◀ ▶▶

◀ ▶

Page 5 of 15

[Home Page](http://https://imsc.uni-graz.at/fripertinger/)

UNI ╦₩

Title Page

◀◀ ▶▶

◀ ▶

Page 5 of 15

Go Back

Full Screen

Quit

The family
$$
(F_{(z_1,z_2)}^{(\ell)}(x))_{(z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K}}
$$
 given by
\n
$$
F_{(z_1,z_2)}^{(\ell)}(x) = \sum_{n\geq 0} \left(\frac{((n-1)\ell+1)!_{\ell}}{n!} \cdot \frac{z_2^n}{z_1^{n-1}} \right) x^{n\ell+1}, \quad (z_1,z_2) \in \mathbb{K}^{\times} \times \mathbb{K},
$$
\nis a non-commutative, two-parameter iteration group in $\mathbb{K}[[x]]$ if and only if

$$
\frac{((n-1)\ell+1)!\ell}{(n-k)!((k-1)\ell+1)!\ell} = \sum_{c=(c_1,\ldots,c_{k\ell+1})} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!\ell}{c_j!} \qquad (2)
$$

holds true for all $n \in \mathbb{N}$ and $0 \leq k \leq n$, where c is a composition of $n-k$, i.e. $c_1 + \cdots + c_{k\ell+1} = n-k$ and all c_i are non-negative integers.

 $\ell = 1$: equation (2) is true. $\ell > 1$: direct computations show that (2) is true for any *n* and $k = 0$ or $n - 4 \le k \le n$. (The proof for $k = n - 5$ is similar to but more complicated than for $k = n-4$.)

UNI Σλ

Stirling Permutations

Title Page

◀◀ ▶▶

 $n \in \{1, 2, 3, \ldots\}$ **Permutation of order** *n*: any sequence of length *n* which contains each element of $\{1,\ldots,n\}$ exactly once.

E.g. for *n* = 3: 123, 132, 213, 231, 312, 321 for $n = 0$: (), the empty word

Stirling Permutations

[Home Page](http://https://imsc.uni-graz.at/fripertinger/)

Title Page

◀ ▶

Page 6 of 15

Go Back

Quit

```
n \in \{1, 2, 3, \ldots\}
```
Permutation of order *n*: any sequence of length *n* which contains each element of $\{1,\ldots,n\}$ exactly once.

◀◀ ▶▶

E.g. for *n* = 3: 123, 132, 213, 231, 312, 321 for $n = 0$: (), the empty word

Stirling permutation of order *n*: any sequence (v_1, \ldots, v_{2n}) of length 2*n* which contains each element of {1,...,*n*} exactly twice, *such that for all* $1 \le i \le j \le k \le 2n$ *if* $v_i = v_k$ *then* $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers $s > r$ may appear.

E.g. for $n = 3: 112233, 133122, 123321, 233211, \ldots$ however 213312, 212133, 312213, 112331 are *not* Stirling permutations.

Title Page

◀◀ ▶▶

◀ ▶

Page 7 of 15

Go Back

 $\ell \geq 1$ a positive integer,

 ℓ -Stirling permutation of order n : any sequence $(v_1, \ldots, v_{\ell n})$ of length ℓn which contains each element of $\{1,\ldots,n\}$ exactly ℓ times, such that *for all* $1 \le i \le j \le k \le \ell n$ *if* $v_i = v_k$ *then* $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers $s \geq r$ may appear.

E.g. for $\ell = 3$, $n = 3$: 222333111, 133312221, 333112221, 112333221, . . .

The element *n* occurs always as a block of length ℓ .

Title Page

◀◀ ▶▶

◀ ▶

Page 7 of 15

Go Back

 $\ell \geq 1$ a positive integer,

 ℓ -Stirling permutation of order n : any sequence $(v_1, \ldots, v_{\ell n})$ of length ℓn which contains each element of $\{1,\ldots,n\}$ exactly ℓ times, such that *for all* $1 \le i \le j \le k \le \ell n$ *if* $v_i = v_k$ *then* $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers $s \geq r$ may appear.

E.g. for $\ell = 3$, $n = 3$: 222333111, 133312221, 333112221, 112333221, . . .

The element *n* occurs always as a block of length ℓ .

For $\ell = 1$ we obtain permutations of order *n*. For $\ell = 2$ we obtain Stirling-permutations of order *n*.

Title Page

◀◀ ▶▶

◀ ▶

Page 7 of 15

Go Back

Quit

 $\ell \geq 1$ a positive integer,

 ℓ -Stirling permutation of order n : any sequence $(v_1, \ldots, v_{\ell n})$ of length ℓn which contains each element of $\{1,\ldots,n\}$ exactly ℓ times, such that *for all* $1 \le i \le j \le k \le \ell n$ *if* $v_i = v_k$ *then* $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers $s \geq r$ may appear.

E.g. for $\ell = 3$, $n = 3$: 222333111, 133312221, 333112221, 112333221, . . .

The element n occurs always as a block of length ℓ .

For $\ell = 1$ we obtain permutations of order *n*. For $\ell = 2$ we obtain Stirling-permutations of order *n*.

If $i+1 < k$, $v_i = v_k$, and $v_i \neq v_j$ for all $j \in \{i+1,\ldots,k-1\}$, then $k - i = m\ell + 1$, where *m* is the number of different values occurring between v_i and v_k . If there exists $j \in \{i+1,\ldots,k-1\}$ such that $v_j = s > v_i$, then all ℓ occurrences of *s* lie between v_i and v_k .

Recursive construction of all ℓ**-Stirling Permutations**

◀◀ ▶▶ ◀ ▶ *Page 8 of 15 Go Back* $n = 0$: () only the empty word

Recursive construction of all ℓ**-Stirling Permutations**

 $n = 0$: () only the empty word

 $n=1\colon 1^\ell:=1\ldots 1, \, \ell\text{-times}.$

Recursive construction of all ℓ**-Stirling Permutations**

Title Page

◀◀ ▶▶

◀ ▶

Page 8 of 15

Go Back

[Home Page](http://https://imsc.uni-graz.at/fripertinger/)

 $n = 0$: () only the empty word

 $n=1\colon 1^\ell:=1\ldots 1, \, \ell\text{-times}.$

 $n = 2$: Take the only ℓ -Stirling permutation of order 1 and insert the block 2^ℓ at the beginning, or in between any two 1s or at the end of the block $1^{\ell}.$

$$
2^{\ell}1^{\ell}, 12^{\ell}1^{\ell-1}, 112^{\ell}1^{\ell-2}, ..., 1^{\ell-1}2^{\ell}1, 1^{\ell}2^{\ell}.
$$

```
E.g for \ell = 4 and n = 2:
22221111, 12222111, 11222211, 11122221, 11112222
```
Quit

◀◀ ▶▶

◀ ▶

Page 8 of 15

Go Back

Full Screen

Recursive construction of all ℓ**-Stirling Permutations**

 $n = 0$: () only the empty word

 $n=1\colon 1^\ell:=1\ldots 1, \, \ell\text{-times}.$

 $n = 2$: Take the only ℓ -Stirling permutation of order 1 and insert the block 2^ℓ at the beginning, or in between any two 1s or at the end of the block $1^{\ell}.$

$$
2^{\ell}1^{\ell}, 12^{\ell}1^{\ell-1}, 112^{\ell}1^{\ell-2}, ..., 1^{\ell-1}2^{\ell}1, 1^{\ell}2^{\ell}.
$$

```
E.g for \ell = 4 and n = 2:
22221111, 12222111, 11222211, 11122221, 11112222
```
n > 2: Take any ℓ -Stirling permutation *v* of order *n* − 1 and insert the block n^{ℓ} at the beginning, or in between any two entries of v or at the end of *v*. They all will be pairwise different and each ℓ-Stirling permutation *v* of order *n* can be obtained in this way.

Quit

The number of ℓ-Stirling permutations of order *n* is

$$
\prod_{j=0}^{n-1} (j\ell + 1) = ((n-1)\ell + 1)!_{\ell}.
$$

For $n = 0, 1$ the formula is true. By the induction hypothesis the number of ℓ -Stirling permutations of order $n-1$ is $((n-2)\ell+1)!_\ell.$ The block n^ℓ can be inserted in $(n-1)\ell+1$ ways.

[Home Page](http://https://imsc.uni-graz.at/fripertinger/)

<u>uni</u>

◀◀ ▶▶

◀ ▶

Page 9 of 15

Go Back

The number of ℓ-Stirling permutations of order *n* is

$$
\prod_{j=0}^{n-1} (j\ell + 1) = ((n-1)\ell + 1)!_{\ell}.
$$

For $n = 0, 1$ the formula is true. By the induction hypothesis the number of ℓ -Stirling permutations of order $n-1$ is $((n-2)\ell+1)!_\ell.$ The block n^ℓ can be inserted in $(n-1)\ell+1$ ways.

On any totally ordered set we can construct ℓ -Stirling permutations, e.g. on subsets A of $\{1,\ldots,n\}.$ Let $S^{(\ell)}(A)$ be the set of all ℓ -Stirling permutations with entries from *A*. Then

$$
|S^{(\ell)}(A)| = ((|A|-1)\ell + 1)!_{\ell}.
$$

[Home Page](http://https://imsc.uni-graz.at/fripertinger/)

<u>uni</u>

Title Page

◀◀ ▶▶

◀ ▶

Page 9 of 15

Go Back

◀◀ ▶▶

◀ ▶

Page 10 of 15

Combinatorial Proof of (2)

[\(2\)](#page-6-0) is equivalent to

$$
((n-1)\ell+1)!_{\ell} = (n-k)!((k-1)\ell+1)!_{\ell} \sum_{c} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!_{\ell}}{c_j!}
$$

= $((k-1)\ell+1)!_{\ell} \sum_{c} {n-k \choose c_1...c_{k\ell+1}} \prod_{j=1}^{k\ell+1} ((c_j-1)\ell+1)!_{\ell}.$

Title Page

◀◀ ▶▶

◀ ▶

Page 10 of 15

Go Back

Quit

Combinatorial Proof of (2)

[\(2\)](#page-6-0) is equivalent to

$$
((n-1)\ell+1)!\ell = (n-k)!(k-1)\ell+1)!\ell \sum_{c} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!\ell}{c_j!}
$$

= $((k-1)\ell+1)!\ell \sum_{c} {n-k \choose c_1...c_{k\ell+1}} \prod_{j=1}^{k\ell+1} ((c_j-1)\ell+1)!\ell.$ (3)

Let

$\mathscr{A} = \{(A_1, \ldots, A_{k\ell+1}) \mid A_j \subseteq \{k+1, \ldots, n\},\}$ $k\ell+1$ $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ $i=1$ $A_j = \{k+1, \ldots, n\}.$

We show that

$$
\left|S^{(\ell)}(\{1,\ldots,n\})\right| = \left|\bigcup_{(A_1,\ldots,A_{k\ell+1})\in\mathscr{A}} S^{(\ell)}(\{1,\ldots,k\})\times\prod_{j=1}^{k\ell+1} S^{(\ell)}(A_j)\right|
$$

.

Title Page

◀◀ ▶▶

◀ ▶

Page 11 of 15

Go Back

Full Screen

Quit

 Φ : $S^{(\ell)}(\{1,\ldots,n\}) \rightarrow \qquad \bigcup_{\mathcal{S}^{(\ell)}} S^{(\ell)}(\{1,\ldots,k\}) \times \{A\} \times$ $A=(A_1,...,A_{k\ell+1})\in\mathscr{A}$ $k\ell+1$ $\prod_{i=1}^n$ *j*=1 $S^{(\ell)}(A_j)$

 $\Phi(v) = (v\downarrow_{\{1,...,k\}}, (A_1, \ldots, A_{k\ell+1}), (v\downarrow_{A_1}, \ldots, v\downarrow_{A_{k\ell+1}}).$

The restriction $v':=v\downarrow_{\{1,...,k\}}$ belongs to $S^{(\ell)}(\{1,\dots,k\})$. It consists of all entries of ν which are $\leq k$.

- A_1 is the set of elements of v occurring in front of the first element of $v^\prime.$ *A*² is the set of elements of *v* occurring between the first and second element of v' .
- $A_{k\ell+1}$ is the set of elements of v occurring after the last element of v' .
- The subsequence of v occurring in front of the first element of v' is an ℓ -Stirling permutation, thus it belongs to $S^{(\ell)}(A_1).$

The subsequence of *v* occurring between the first and second element of v' is an element of $S^{(\ell)}(A_2).$

The subsequence of v occurring after the last element of v' is an element of $S^{(\ell)}(A_{k\ell+1})$.

For example
$$
\ell = 3
$$
, $n = 5$, $k = 2$.
\n $v = 555222113344431$.
\nThen $v' = v \downarrow_{\{1,2\}} = 222111$.
\n $A_1 = \{5\}, A_2 = A_3 = A_4 = A_5 = \emptyset, A_6 = \{3,4\}, A_7 = \emptyset$.
\nThe A_i are pairwise disjoint, and their union gives $\{3,4,5\}$.
\n $v \downarrow_{A_1} = 555, v \downarrow_{A_6} = 334443, v \downarrow_{A_j} = ()$ for $j \in \{2,3,4,5,7\}$.
\nThus $\Phi(v) =$
\n $(222111, (\{5\}, \emptyset, \emptyset, \emptyset, \emptyset, \{3,4\}, \emptyset), (555,(),(),(),(),), 334443,())$).

Page 12 of 15

[Home Page](http://https://imsc.uni-graz.at/fripertinger/)

◀◀ ▶▶

We show that Φ is bijective by proving that Ψ is its inverse.

Title Page

◀ ▶

Page 13 of 15

Go Back

Full Screen

Quit

 \rightarrow

Ψ:

$$
\Psi: \bigcup_{A=(A_1,...,A_{k\ell+1})\in\mathscr{A}} S^{(\ell)}(\{1,...,k\}) \times \{A\} \times \prod_{j=1}^{k\ell+1} S^{(\ell)}(A_j) \to S^{(\ell)}(\{1,...,n\})
$$
\nis the concatenation of

\n
$$
\Psi(w_1...w_{k\ell}, (A_1,...,A_{k\ell+1}), (z_1,...,z_{k\ell+1}))
$$

$$
z_1 \|w_1\|z_2\|w_2\|\ldots\|z_{k\ell}\|w_{k\ell}\|z_{k\ell+1}.\tag{4}
$$

By construction each element of $\{1,\ldots,n\}$ occurs exactly ℓ times in (4). $r > k$: there exists exactly one j so that $r \in A_j$. Between two $\textsf{occurrences of } r \text{ in } z_j \text{ only numbers} \geq r \text{ appear, since } z_j \in S^{(\ell)}(A_j).$ $r \leq k$: If $s < r$, then all occurrences of r and s lie in $w_1 \ldots w_{k\ell}$, hence no s occurs between two occurrences of *r*. Ψ is well defined. $\Phi \circ \Psi = id$ and $\Psi \circ \Phi = id$.

UNI

Title Page

◀◀ ▶▶

◀ ▶

Page 14 of 15

Go Back

$$
((n-1)\ell+1)!_{\ell} = \left| S^{(\ell)}(\{1,\ldots,n\}) \right|
$$

=
$$
\left| \bigcup_{(A_1,\ldots,A_{k\ell+1}) \in \mathscr{A}} S^{(\ell)}(\{1,\ldots,k\}) \times \prod_{j=1}^{k\ell+1} S^{(\ell)}(A_j) \right|
$$

=
$$
\sum_{(A_1,\ldots,A_{k\ell+1}) \in \mathscr{A}} \left| S^{(\ell)}(\{1,\ldots,k\}) \right| \prod_{j=1}^{k\ell+1} \left| S^{(\ell)}(A_j) \right|
$$

=
$$
((k-1)\ell+1)!_{\ell} \sum_{c} {n-k \choose c_1 \ldots c_{k\ell+1}} \prod_{j=1}^{k\ell+1} ((c_j-1)\ell+1)!_{\ell}
$$

where the sum is taken over all compositions $c = (c_1, \ldots, c_{k\ell+1})$ of $n-k$ into $k\ell+1$ summands, since

$$
|\{(A_1,\ldots,A_{k\ell})\in\mathscr{A}:|A_j|=c_j, j=1,\ldots,k\ell+1\}|=\binom{n-k}{c_1\ldots c_{k\ell+1}}
$$

and [\(3\)](#page-19-0) is established.

Contents

UNI 苏文

> [Generalized Stirling Permutations and Iteration Theory](#page-0-0) [Iteration Groups](#page-1-0) [Generalized Factorial](#page-2-0) [A non-commutative two-parameter Iteration Group](#page-3-0) [Stirling Permutations](#page-8-0) [Recursive construction of all](#page-15-0) *ℓ*-Stirling Permutations [Combinatorial Proof of \(2\)](#page-19-0)