

Generalized Stirling Permutations and Iteration Theory

Joint work with Wojciech Jabłoński

Harald Fripertinger Karl-Franzens-Universität Graz 60-th ISFE, June 9–15, 2024, Kościelisko, Poland

Using generalized Stirling permutations, I will present a combinatorial proof that a certain family of power series suggested by Wojciech Jabłoński is indeed a two-parameter iteration group.

Iteration Groups

\mathbb{K} be a field of characteristic 0, (G,*) a group, $\mathbb{K}[[x]]$ the ring of formal powerseries $f(x) = \sum_{n>0} a_n x^n$, $a_n \in \mathbb{K}$, $\Gamma := \{ g(x) \in \mathbb{K}[[x]] \mid g(x) = \sum_{n > 1} b_n x^n, \},\$ for $f \in \mathbb{K}[[x]], g \in \Gamma$, the composition $(f \circ g) = \sum_{n \geq 0} a_n [g(x)]^n$. An iteration group is a family $(F_g(x))_{g\in G}$ of elements in Γ such that $F_{g*g'}(x) = (F_g \circ F_{g'})(x), \text{ or } F(g*g',x) = F(g,F(g',x)), g,g' \in G,$ where $F(g,x) = F_g(x)$. Thus it is a solution of the translation equation. E.g. $\mathbb{K} = \mathbb{C}$ and $G = (\mathbb{C}, +)$ was studied by L. Reich.

Page 2 of 15

Generalized Factorial

$\ell \geq 1$ a positive integer, generalized factorial

$$(k\ell+1)!_{\ell} := \prod_{j=0}^{k} (j\ell+1) = 1 \cdot (\ell+1) \cdots (k\ell+1), \qquad k \in \mathbb{Z},$$

if k < 0, then $(k\ell + 1)!_{\ell} = 1$, the empty product, if $\ell = 1$, then $(k\ell + 1)!_{\ell} = (k+1)!$.

Qui

Page **3** of **15**

A non-commutative two-parameter Iteration Group

W. Jabłoński studies iteration groups where G is different from \mathbb{K} .

 $\ell \geq 1$ a positive integer, $G := (\mathbb{K}^{\times} \times \mathbb{K}, \diamond),$

 $(y_1, y_2) \diamond (z_1, z_2) = (y_1 z_1, y_1 z_2 + y_2 z_1^{\ell+1}), \qquad (y_1, y_2), (z_1, z_2) \in G$

G is not commutative since $\ell + 1 \ge 2$.

```
W.J. proves in
```

Page 4 of 15

An explicit example of an iteration group in the ring of formal power series, in Aequationes Mathematicae **98**, Nr. 3, 837–850, (2024)

the following theorem.

The family
$$\left(F_{(z_1,z_2)}^{(\ell)}(x)\right)_{(z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K}}$$
 given by

$$F_{(z_1,z_2)}^{(\ell)}(x) = \sum_{n\geq 0} \left(\frac{\left((n-1)\ell+1\right)!_{\ell}}{n!} \cdot \frac{z_2^n}{z_1^{n-1}}\right) x^{nl+1}, \quad (z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K},$$
(1)
is a non-commutative, two-parameter iteration group in $\mathbb{K}[[x]]$ if and
only if

$$\frac{((n-1)\ell+1)!_{\ell}}{(n-k)!((k-1)\ell+1)!_{\ell}} = \sum_{c=(c_1,\dots,c_{k\ell+1})} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!_{\ell}}{c_j!}$$
(2)

holds true for all $n \in \mathbb{N}$ and $0 \le k \le n$, where *c* is a composition of n-k, i.e. $c_1 + \cdots + c_{k\ell+1} = n-k$ and all c_i are non-negative integers.

Close

Page **5** of **15**

UNI GRAZ

The family
$$\left(F_{(z_1,z_2)}^{(\ell)}(x)\right)_{(z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K}}$$
 given by

$$F_{(z_1,z_2)}^{(\ell)}(x) = \sum_{n\geq 0} \left(\frac{((n-1)\ell+1)!_{\ell}}{n!} \cdot \frac{z_2^n}{z_1^{n-1}}\right) x^{nl+1}, \quad (z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K},$$
(1)
is a non-commutative, two-parameter iteration group in $\mathbb{K}[x]$ if and
only if

$$((n-1)\ell+1)!_{\ell} = \sum_{n\geq 0} \left(\frac{(\ell-1)\ell+1}{n!} \cdot \frac{k\ell+1}{\ell} + \frac{k\ell+1}{\ell$$

$$\frac{((n-1)\ell+1)!_{\ell}}{(n-k)!((k-1)\ell+1)!_{\ell}} = \sum_{c=(c_1,\dots,c_{k\ell+1})} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!_{\ell}}{c_j!}$$
(2)

holds true for all $n \in \mathbb{N}$ and $0 \le k \le n$, where c is a composition of n-k, i.e. $c_1 + \cdots + c_{k\ell+1} = n-k$ and all c_i are non-negative integers.

 $\ell = 1$: equation (2) is true.

Quit

Page **5** of **15**

UN

Page 5 of 15

The family
$$\left(F_{(z_1,z_2)}^{(\ell)}(x)\right)_{(z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K}}$$
 given by

$$F_{(z_1,z_2)}^{(\ell)}(x) = \sum_{n\geq 0} \left(\frac{\left((n-1)\ell+1\right)!_{\ell}}{n!} \cdot \frac{z_2^n}{z_1^{n-1}}\right) x^{nl+1}, \quad (z_1,z_2)\in\mathbb{K}^{\times}\times\mathbb{K},$$
(1)
is a non-commutative, two-parameter iteration group in $\mathbb{K}[[x]]$ if and
only if

$$\frac{((n-1)\ell+1)!_{\ell}}{(n-k)!((k-1)\ell+1)!_{\ell}} = \sum_{c=(c_1,\dots,c_{k\ell+1})} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!_{\ell}}{c_j!}$$
(2)

holds true for all $n \in \mathbb{N}$ and $0 \le k \le n$, where *c* is a composition of n-k, i.e. $c_1 + \cdots + c_{k\ell+1} = n-k$ and all c_i are non-negative integers.

 $\ell = 1$: equation (2) is true. $\ell > 1$: direct computations show that (2) is true for any n and k = 0 or $n - 4 \le k \le n$. (The proof for k = n - 5 is similar to but more complicated than for k = n - 4.)

UNI GRAZ

Stirling Permutations

Title Page

 $n \in \{1, 2, 3, ...\}$ **Permutation of order** *n*: any sequence of length *n* which contains each element of $\{1, ..., n\}$ exactly once.

E.g. for n = 3: 123, 132, 213, 231, 312, 321 for n = 0: (), the empty word

Page 6 of 15

Stirling Permutations

UNI GRAZ

Page 6 of 15

 $n \in \{1, 2, 3, ...\}$ **Permutation of order** *n*: any sequence of length *n* which contains each element of $\{1, ..., n\}$ exactly once.

E.g. for n = 3: 123, 132, 213, 231, 312, 321 for n = 0: (), the empty word

Stirling permutation of order *n*: any sequence (v_1, \ldots, v_{2n}) of length 2n which contains each element of $\{1, \ldots, n\}$ exactly twice, **such that** for all $1 \le i \le j \le k \le 2n$ if $v_i = v_k$ then $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers s > r may appear.

E.g. for *n* = 3: 112233, 133122, 123321, 233211, ... however 213312, 212133, 312213, 112331 are *not* Stirling permutations.

 $\ell \geq 1$ a positive integer,

 ℓ -Stirling permutation of order n: any sequence $(v_1, \ldots, v_{\ell n})$ of length ℓn which contains each element of $\{1, \ldots, n\}$ exactly ℓ times, such that for all $1 \le i \le j \le k \le \ell n$ if $v_i = v_k$ then $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers $s \ge r$ may appear.

E.g. for $\ell = 3$, n = 3: 222333111, 133312221, 333112221, 112333221, ...

The element *n* occurs always as a block of length ℓ .

Page 7 of 15

Page **7** of **15**

 $\ell \geq 1$ a positive integer,

 ℓ -Stirling permutation of order n: any sequence $(v_1, \ldots, v_{\ell n})$ of length ℓn which contains each element of $\{1, \ldots, n\}$ exactly ℓ times, such that for all $1 \le i \le j \le k \le \ell n$ if $v_i = v_k$ then $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers $s \ge r$ may appear.

E.g. for $\ell = 3$, n = 3: 222333111, 133312221, 333112221, 112333221, ...

The element *n* occurs always as a block of length ℓ .

For $\ell = 1$ we obtain permutations of order *n*. For $\ell = 2$ we obtain Stirling-permutations of order *n*.

Page **7** of **15**

 $\ell \geq 1$ a positive integer,

 ℓ -Stirling permutation of order n: any sequence $(v_1, \ldots, v_{\ell n})$ of length ℓn which contains each element of $\{1, \ldots, n\}$ exactly ℓ times, such that for all $1 \le i \le j \le k \le \ell n$ if $v_i = v_k$ then $v_j \ge v_i$. Between two occurrences of the number $r \in \{1, \ldots, n\}$ only numbers $s \ge r$ may appear.

E.g. for $\ell = 3$, n = 3: 222333111, 133312221, 333112221, 112333221, ...

The element *n* occurs always as a block of length ℓ .

For $\ell = 1$ we obtain permutations of order *n*. For $\ell = 2$ we obtain Stirling-permutations of order *n*.

If i + 1 < k, $v_i = v_k$, and $v_i \neq v_j$ for all $j \in \{i + 1, ..., k - 1\}$, then $k - i = m\ell + 1$, where *m* is the number of different values occurring between v_i and v_k . If there exists $j \in \{i + 1, ..., k - 1\}$ such that $v_j = s > v_i$, then all ℓ occurrences of *s* lie between v_i and v_k .

n = 0: () only the empty word

Recursive construction of all *ℓ***-Stirling Permutations**

 Title Page

 Contents

 ▲

 ▶

 ▲

 Page 8 of 15

Go Back

Full Screen

Close

Quit

Recursive construction of all *ℓ***-Stirling Permutations**

Title Page

n = 0: () only the empty word

 $n = 1: 1^{\ell} := 1 \dots 1$, ℓ -times.

Recursive construction of all \ell-Stirling Permutations

n = 0: () only the empty word

 $n = 1: 1^{\ell} := 1 \dots 1$, ℓ -times.

n = 2: Take the only ℓ -Stirling permutation of order 1 and insert the block 2^{ℓ} at the beginning, or in between any two 1s or at the end of the block 1^{ℓ} .

$$2^{\ell}1^{\ell}, \ 12^{\ell}1^{\ell-1}, \ 112^{\ell}1^{\ell-2}, \ \ldots, \ 1^{\ell-1}2^{\ell}1, \ 1^{\ell}2^{\ell}.$$

```
E.g for \ell = 4 and n = 2:
22221111, 12222111, 11222211, 11122221, 11112222
```

Qui

Page 8 of 15

Page 8 of 15

Recursive construction of all *ℓ***-Stirling Permutations**

n = 0: () only the empty word

 $n = 1: 1^{\ell} := 1 \dots 1$, ℓ -times.

n = 2: Take the only ℓ -Stirling permutation of order 1 and insert the block 2^{ℓ} at the beginning, or in between any two 1s or at the end of the block 1^{ℓ} .

$$2^{\ell}1^{\ell}, \ 12^{\ell}1^{\ell-1}, \ 112^{\ell}1^{\ell-2}, \ \ldots, \ 1^{\ell-1}2^{\ell}1, \ 1^{\ell}2^{\ell}.$$

```
E.g for \ell = 4 and n = 2:
22221111, 12222111, 11222211, 11122221, 11112222
```

n > 2: Take any ℓ -Stirling permutation v of order n - 1 and insert the block n^{ℓ} at the beginning, or in between any two entries of v or at the end of v. They all will be pairwise different and each ℓ -Stirling permutation v of order n can be obtained in this way.

The number of ℓ -Stirling permutations of order *n* is

$$\prod_{j=0}^{n-1} (j\ell+1) = ((n-1)\ell+1)!_{\ell}.$$

For n = 0, 1 the formula is true. By the induction hypothesis the number of ℓ -Stirling permutations of order n - 1 is $((n - 2)\ell + 1)!_{\ell}$. The block n^{ℓ} can be inserted in $(n - 1)\ell + 1$ ways.

Page 9 of 15

The number of ℓ -Stirling permutations of order *n* is

$$\prod_{j=0}^{n-1} (j\ell+1) = ((n-1)\ell+1)!_{\ell}.$$

For n = 0, 1 the formula is true. By the induction hypothesis the number of ℓ -Stirling permutations of order n - 1 is $((n - 2)\ell + 1)!_{\ell}$. The block n^{ℓ} can be inserted in $(n - 1)\ell + 1$ ways.

On any totally ordered set we can construct ℓ -Stirling permutations, e.g. on subsets A of $\{1, \ldots, n\}$. Let $S^{(\ell)}(A)$ be the set of all ℓ -Stirling permutations with entries from A. Then

$$S^{(\ell)}(A)| = ((|A|-1)\ell + 1)!_{\ell}.$$

Quit

Page 9 of 15

Combinatorial Proof of (2)

(2) is equivalent to

$$(n-1)\ell+1)!_{\ell} = (n-k)!((k-1)\ell+1)!_{\ell} \sum_{c} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!_{\ell}}{c_j!}$$
$$= ((k-1)\ell+1)!_{\ell} \sum_{c} \binom{n-k}{c_1 \dots c_{k\ell+1}} \prod_{j=1}^{k\ell+1} ((c_j-1)\ell+1)!_{\ell}.$$

Page 10 of 15

Combinatorial Proof of (2)

(2) is equivalent to

$$(n-1)\ell+1)!_{\ell} = (n-k)!((k-1)\ell+1)!_{\ell} \sum_{c} \prod_{j=1}^{k\ell+1} \frac{((c_j-1)\ell+1)!_{\ell}}{c_j!}$$
$$= ((k-1)\ell+1)!_{\ell} \sum_{c} \binom{n-k}{c_1 \dots c_{k\ell+1}} \prod_{j=1}^{k\ell+1} ((c_j-1)\ell+1)!_{\ell}.$$
(3)

Page 10 of 15

$$\mathscr{A} = \{ (A_1, \dots, A_{k\ell+1}) \mid A_j \subseteq \{k+1, \dots, n\}, \bigcup_{j=1}^{k\ell+1} A_j = \{k+1, \dots, n\} \}.$$

We show that

$$\left| S^{(\ell)}(\{1,\ldots,n\}) \right| = \left| \bigcup_{(A_1,\ldots,A_{k\ell+1}) \in \mathscr{A}} S^{(\ell)}(\{1,\ldots,k\}) \times \prod_{j=1}^{k\ell+1} S^{(\ell)}(A_j) \right|$$

.

Page 11 of 15

$$\Phi: S^{(\ell)}(\{1, \dots, n\}) \to \bigcup_{A = (A_1, \dots, A_{k\ell+1}) \in \mathscr{A}} S^{(\ell)}(\{1, \dots, k\}) \times \{A\} \times \prod_{j=1}^{k\ell+1} S^{(\ell)}(A_j)$$

$$\Phi(v) = (v \downarrow_{\{1,\ldots,k\}}, (A_1,\ldots,A_{k\ell+1}), (v \downarrow_{A_1},\ldots,v \downarrow_{A_{k\ell+1}}).$$

The restriction $v' := v \downarrow_{\{1,...,k\}}$ belongs to $S^{(\ell)}(\{1,...,k\})$. It consists of all entries of v which are $\leq k$.

- A_1 is the set of elements of *v* occurring in front of the first element of *v'*. A_2 is the set of elements of *v* occurring between the first and second element of *v'*.
- $A_{k\ell+1}$ is the set of elements of v occurring after the last element of v'.
 - The subsequence of *v* occurring in front of the first element of *v'* is an ℓ -Stirling permutation, thus it belongs to $S^{(\ell)}(A_1)$.

The subsequence of *v* occurring between the first and second element of v' is an element of $S^{(\ell)}(A_2)$.

The subsequence of *v* occurring after the last element of v' is an element of $S^{(\ell)}(A_{k\ell+1})$.

For example
$$\ell = 3, n = 5, k = 2.$$

 $v = 555222113344431.$
Then $v' = v \downarrow_{\{1,2\}} = 222111.$
 $A_1 = \{5\}, A_2 = A_3 = A_4 = A_5 = \emptyset, A_6 = \{3,4\}, A_7 = \emptyset.$
The A_i are pairwise disjoint, and their union gives $\{3,4,5\}.$
 $v \downarrow_{A_1} = 555, v \downarrow_{A_6} = 334443, v \downarrow_{A_j} = ()$ for $j \in \{2,3,4,5,7\}.$
Thus $\Phi(v) =$
 $(222111, (\{5\}, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \{3,4\}, \emptyset), (555, (), (), (), (), 334443, ()))).$

Quit

Page 12 of 15

UNI GRAZ

Page 13 of 15

$$\begin{split} \Psi : \bigcup_{A = (A_1, \dots, A_{k\ell+1}) \in \mathscr{A}} S^{(\ell)}(\{1, \dots, k\}) \times \{A\} \times \prod_{j=1}^{k\ell+1} S^{(\ell)}(A_j) \to S^{(\ell)}(\{1, \dots, n\}) \\ & \Psi \Big(w_1 \dots w_{k\ell}, (A_1, \dots, A_{k\ell+1}), (z_1, \dots, z_{k\ell+1}) \Big) \\ \text{is the concatenation of} \\ & z_1 \| w_1 \| z_2 \| w_2 \| \dots \| z_{k\ell} \| w_{k\ell} \| z_{k\ell+1}. \end{split}$$
(4)
By construction each element of $\{1, \dots, n\}$ occurs exactly ℓ times in (4).
 $r > k$: there exists exactly one j so that $r \in A_j$. Between two occurrences of r in z_j only numbers $\geq r$ appear, since $z_j \in S^{(\ell)}(A_j)$.
 $r \leq k$: If $s < r$, then all occurrences of r and s lie in $w_1 \dots w_{k\ell}$, hence no s

We show that Φ is bijective by proving that Ψ is its inverse.

occurs between two occurrences of r.

 Ψ is well defined.

 $\Phi \circ \Psi = \mathrm{id}$ and $\Psi \circ \Phi = \mathrm{id}$.

 $((n-1)\ell+1)!_{\ell} = \left| S^{(\ell)}(\{1,\ldots,n\}) \right|$ $= \left| \bigcup_{(A_1,\ldots,A_{k\ell+1}) \in \mathscr{A}} S^{(\ell)}(\{1,\ldots,k\}) \times \prod_{j=1}^{k\ell+1} S^{(\ell)}(A_j) \right|$ $=\sum_{(A_1,\ldots,A_{k\ell+1})\in\mathscr{A}} \left| S^{(\ell)}(\{1,\ldots,k\}) \right| \prod_{j=1}^{k\ell+1} \left| S^{(\ell)}(A_j) \right|$ $= ((k-1)\ell+1)!_{\ell} \sum_{c} \binom{n-k}{c_1 \dots c_{k\ell+1}} \prod_{j=1}^{k\ell+1} ((c_j-1)\ell+1)!_{\ell}$

where the sum is taken over all compositions $c = (c_1, \ldots, c_{k\ell+1})$ of n - k into $k\ell + 1$ summands, since

$$|\{(A_1, \dots, A_{k\ell}) \in \mathscr{A} : |A_j| = c_j, \ j = 1, \dots, k\ell + 1\}| = \binom{n-k}{c_1 \dots c_{k\ell+1}}$$

and (3) is established.

Quit

Page 14 of 15

Contents

> Generalized Stirling Permutations and Iteration Theory Iteration Groups Generalized Factorial A non-commutative two-parameter Iteration Group Stirling Permutations Recursive construction of all ℓ -Stirling Permutations Combinatorial Proof of (2)