Methods and Results in Musical Enumeration Theory

FUF
Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and Music Informatics
University Zürich, October 24 - October 26, 2002

Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and Music Informatics
University Zürich, October 24 - October 26, 2002

Group actions are the standard tool for the classification of discrete structures. We will discuss the following topics:

Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and Music Informatics
University Zürich, October 24 - October 26, 2002

Group actions are the standard tool for the classification of discrete structures. We will discuss the following topics:

- what are discrete structures,

Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and Music Informatics
University Zürich, October 24 - October 26, 2002

Group actions are the standard tool for the classification of discrete structures. We will discuss the following topics:

- what are discrete structures,
- basic facts about classification under group actions,

Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and Music Informatics
University Zürich, October 24 - October 26, 2002

Group actions are the standard tool for the classification of discrete structures. We will discuss the following topics:

- what are discrete structures,
- basic facts about classification under group actions,
- some applications in music theory,

Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and Music Informatics
University Zürich, October 24 - October 26, 2002

Group actions are the standard tool for the classification of discrete structures. We will discuss the following topics:

- what are discrete structures,
- basic facts about classification under group actions,
- some applications in music theory,
- some results on the enumeration of canons.

Discrete Structures

Discrete structures are objects which can be constructed as:

Discrete Structures

Discrete structures are objects which can be constructed as:

- subsets, unions, products of finite sets,

Discrete Structures

Discrete structures are objects which can be constructed as:

- subsets, unions, products of finite sets,
- mappings between finite sets,

Discrete Structures

Discrete structures are objects which can be constructed as:

- subsets, unions, products of finite sets,
- mappings between finite sets,
- bijections, linear orders on finite sets,

Discrete Structures

Discrete structures are objects which can be constructed as:

- subsets, unions, products of finite sets,
- mappings between finite sets,
- bijections, linear orders on finite sets,
- equivalence classes on finite sets,

Discrete Structures

Discrete structures are objects which can be constructed as:

- subsets, unions, products of finite sets,
- mappings between finite sets,
- bijections, linear orders on finite sets,
- equivalence classes on finite sets,
- vector spaces over finite fields, ...

Discrete Structures

FWF
Discrete structures are objects which can be constructed as:

- subsets, unions, products of finite sets,
- mappings between finite sets,
- bijections, linear orders on finite sets,
- equivalence classes on finite sets,
- vector spaces over finite fields, ...

Examples: graphs, necklaces, designs, codes, matroids, switching functions, molecules in chemistry, spin-configurations in physics, objects of local music theory.

Classification under Group Actions

The process of classification provides more detailed information about the objects in a discrete structure. We distinguish different steps in the process of classification:

Classification under Group Actions

The process of classification provides more detailed information about the objects in a discrete structure. We distinguish different steps in the process of classification:
step 1: Determine the number of different objects.

Classification under Group Actions

The process of classification provides more detailed information about the objects in a discrete structure. We distinguish different steps in the process of classification:
step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties.

Classification under Group Actions

The process of classification provides more detailed information about the objects in a discrete structure. We distinguish different steps in the process of classification:
step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties. step 3: Determine a complete list of the elements of a discrete structure.

Classification under Group Actions

The process of classification provides more detailed information about the objects in a discrete structure. We distinguish different steps in the process of classification:
step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties. step 3: Determine a complete list of the elements of a discrete structure.
step 4: Generate the objects of a discrete structure uniformly at random.

Classification under Group Actions

The process of classification provides more detailed information about the objects in a discrete structure. We distinguish different steps in the process of classification:
step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties. step 3: Determine a complete list of the elements of a discrete structure.
step 4: Generate the objects of a discrete structure uniformly at random.

Often the elements of a discrete structure are themselves classes of objects which are considered to be equivalent. These classes collect all those elements which are not essentially different. (Relabellings of labelled structures, or otherwise naturally motivated equivalence relations.)

Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges, where each edge connects exactly two different vertices.

Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges, where each edge connects exactly two different vertices.
step 1: There are 11 graphs on 4 vertices.

Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges, where each edge connects exactly two different vertices.
step 1: There are 11 graphs on 4 vertices.
step 2: There exists exactly one graph with $0,1,5$ or 6 edges; two graphs with 2 or 4 edges; three graphs with 3 edges.

Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges, where each edge connects exactly two different vertices.
step 1: There are 11 graphs on 4 vertices.
step 2: There exists exactly one graph with $0,1,5$ or 6 edges; two graphs with 2 or 4 edges; three graphs with 3 edges.
step 3:

Example: Classification of Graphs on 4 vertices

 FUFThe standard tool for the classification of discrete structures are group actions.

Group Actions

A multiplicative group G with neutral element 1 acts on a set X if there exists a mapping

$$
*: G \times X \rightarrow X \quad *(g, x) \mapsto g * x
$$

Group Actions

A multiplicative group G with neutral element 1 acts on a set X if there exists a mapping

$$
*: G \times X \rightarrow X \quad *(g, x) \mapsto g * x
$$

such that

$$
\left(g_{1} g_{2}\right) * x=g_{1} *\left(g_{2} * x\right) \quad g_{1}, g_{2} \in G, x \in X
$$

Group Actions

A multiplicative group G with neutral element 1 acts on a set X if there exists a mapping

$$
*: G \times X \rightarrow X \quad *(g, x) \mapsto g * x
$$

such that

$$
\left(g_{1} g_{2}\right) * x=g_{1} *\left(g_{2} * x\right) \quad g_{1}, g_{2} \in G, x \in X
$$

and

$$
1 * x=x \quad x \in X .
$$

Group Actions

A multiplicative group G with neutral element 1 acts on a set X if there exists a mapping

$$
*: G \times X \rightarrow X \quad *(g, x) \mapsto g * x
$$

such that

$$
\left(g_{1} g_{2}\right) * x=g_{1} *\left(g_{2} * x\right) \quad g_{1}, g_{2} \in G, x \in X
$$

and

$$
1 * x=x \quad x \in X .
$$

Notation: We usually write $g x$ instead of $g * x$.

Group Actions

A multiplicative group G with neutral element 1 acts on a set X if there exists a mapping

$$
*: G \times X \rightarrow X \quad *(g, x) \mapsto g * x
$$

such that

$$
\left(g_{1} g_{2}\right) * x=g_{1} *\left(g_{2} * x\right) \quad g_{1}, g_{2} \in G, x \in X
$$

and

$$
1 * x=x \quad x \in X .
$$

Notation: We usually write $g x$ instead of $g * x$.
A group action will be indicated as ${ }_{G} X$.

Group Actions

A multiplicative group G with neutral element 1 acts on a set X if there exists a mapping

$$
*: G \times X \rightarrow X \quad *(g, x) \mapsto g * x
$$

such that

$$
\left(g_{1} g_{2}\right) * x=g_{1} *\left(g_{2} * x\right) \quad g_{1}, g_{2} \in G, x \in X
$$

and

$$
1 * x=x \quad x \in X .
$$

Notation: We usually write $g x$ instead of $g * x$.
A group action will be indicated as ${ }_{G} X$.
If G and X are finite sets, then we speak of a finite group action.

Orbits under Group Actions

A group action ${ }_{G} X$ defines the following equivalence relation on X. $x_{1} \sim x_{2}$ if and only if there is some $g \in G$ such that $x_{2}=g x_{1}$.

Orbits under Group Actions

A group action ${ }_{G} X$ defines the following equivalence relation on X. $x_{1} \sim x_{2}$ if and only if there is some $g \in G$ such that $x_{2}=g x_{1}$. The equivalence classes $G(x)$ with respect to \sim are the orbits of G on X. Hence, the orbit of x under the action of G is

$$
G(x)=\{g x \mid g \in G\} .
$$

Orbits under Group Actions

A group action ${ }_{G} X$ defines the following equivalence relation on X. $x_{1} \sim x_{2}$ if and only if there is some $g \in G$ such that $x_{2}=g x_{1}$. The equivalence classes $G(x)$ with respect to \sim are the orbits of G on X. Hence, the orbit of x under the action of G is

$$
G(x)=\{g x \mid g \in G\} .
$$

The set of orbits of G on X is indicated as

$$
G \backslash \backslash X:=\{G(x) \mid x \in X\} .
$$

Orbits under Group Actions

A group action ${ }_{G} X$ defines the following equivalence relation on X. $x_{1} \sim x_{2}$ if and only if there is some $g \in G$ such that $x_{2}=g x_{1}$. The equivalence classes $G(x)$ with respect to \sim are the orbits of G on X. Hence, the orbit of x under the action of G is

$$
G(x)=\{g x \mid g \in G\} .
$$

The set of orbits of G on X is indicated as

$$
G \backslash \backslash X:=\{G(x) \mid x \in X\} .
$$

Theorem. The equivalence classes of any equivalence relation can be represented as orbits under a suitable group action.

Stabilizers and Fixed Points

Let ${ }_{G} X$ be a group action. For each $x \in X$ the stabilizer G_{x} of x is the set of all group elements which do not change x, in other words

$$
G_{x}:=\{g \in G \mid g x=x\} .
$$

It is a subgroup of G.

Stabilizers and Fixed Points

Let ${ }_{G} X$ be a group action. For each $x \in X$ the stabilizer G_{x} of x is the set of all group elements which do not change x, in other words

$$
G_{x}:=\{g \in G \mid g x=x\}
$$

It is a subgroup of G.
Lagrange Theorem. If ${ }_{G} X$ is a finite group action then the size of the orbit of $x \in X$ equals

$$
|G(x)|=\frac{|G|}{\left|G_{x}\right|} .
$$

Stabilizers and Fixed Points

Let ${ }_{G} X$ be a group action. For each $x \in X$ the stabilizer G_{x} of x is the set of all group elements which do not change x, in other words

$$
G_{x}:=\{g \in G \mid g x=x\}
$$

It is a subgroup of G.
Lagrange Theorem. If ${ }_{G} X$ is a finite group action then the size of the orbit of $x \in X$ equals

$$
|G(x)|=\frac{|G|}{\left|G_{x}\right|}
$$

Finally, the set of all fixed points of $g \in G$ is denoted by

$$
X_{g}:=\{x \in X \mid g x=x\}
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma.

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=
$$

Enumeration under Group Actions

FUF
Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Proof.

$$
\sum_{g \in G}\left|X_{g}\right|=
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Proof.

$$
\sum_{g \in G}\left|X_{g}\right|=\sum_{g \in G x: g x=x} \sum 1=
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Proof.

$$
\sum_{g \in G}\left|X_{g}\right|=\sum_{g \in G} \sum_{x: g x=x} 1=\sum_{x \in X} \sum_{g: g x=x} 1=
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Proof.

$$
\sum_{g \in G}\left|X_{g}\right|=\sum_{g \in G x: g x=x} \sum_{x \in X} 1=\sum_{g: g x=x} \sum_{x \in X} 1=\sum_{x}\left|G_{x}\right|=
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Proof.

$$
\begin{aligned}
& \sum_{g \in G}\left|X_{g}\right|=\sum_{g \in G x: g x=x} \sum_{x \in X} 1=\sum_{g: g x=x} \sum_{x \in X} 1=\sum_{x \in X}\left|G_{x}\right|= \\
= & |G| \sum_{x \in X} \frac{1}{|G(x)|}=
\end{aligned}
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Proof.

$$
\begin{aligned}
& \sum_{g \in G}\left|X_{g}\right|=\sum_{g \in G x: g x=x} \sum_{x \in X} 1=\sum_{g: g x=x} \sum_{x \in X} 1=\sum_{x \in X}\left|G_{x}\right|= \\
= & |G| \sum_{x \in X} \frac{1}{|G(x)|}=|G| \sum_{\omega \in G \backslash X} \sum_{x \in \omega} \frac{1}{|\omega|}=
\end{aligned}
$$

Enumeration under Group Actions

Let ${ }_{G} X$ be finite group action. The main tool for determining the number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite group action ${ }_{G} X$ is the average number of fixed points.

$$
|G \backslash \backslash X|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Proof.

$$
\begin{aligned}
& \sum_{g \in G}\left|X_{g}\right|=\sum_{g \in G: x: g x=x} 1=\sum_{x \in X} \sum_{g: z x=x} 1=\sum_{x \in X}\left|G_{x}\right|= \\
& =|G| \sum_{x \in X} \frac{1}{|G(x)|}=|G| \sum_{\omega \in G \backslash X X \in \epsilon} \sum_{x \in \omega} \frac{1}{|\omega|}=|G||G \backslash X X| .
\end{aligned}
$$

Symmetry types of mappings

The most important applications of classification under group actions can be described as mappings between two sets. Group actions on the domain X or range Y induce group actions on Y^{X}.

Symmetry types of mappings

The most important applications of classification under group actions can be described as mappings between two sets. Group actions on the domain X or range Y induce group actions on Y^{X}. Let ${ }_{G} X$ and ${ }_{H} Y$ be group actions.

- Then G acts on Y^{X} by

$$
G \times Y^{X} \rightarrow Y^{X}, \quad(g, f) \mapsto f \circ \bar{g}^{-1}
$$

Symmetry types of mappings

The most important applications of classification under group actions can be described as mappings between two sets. Group actions on the domain X or range Y induce group actions on Y^{X}. Let ${ }_{G} X$ and ${ }_{H} Y$ be group actions.

- Then G acts on Y^{X} by

$$
G \times Y^{X} \rightarrow Y^{X}, \quad(g, f) \mapsto f \circ \bar{g}^{-1}
$$

- Then H acts on Y^{X} by

$$
H \times Y^{X} \rightarrow Y^{X}, \quad(h, f) \mapsto \bar{h} \circ f
$$

Symmetry types of mappings

FUF
The most important applications of classification under group actions can be described as mappings between two sets. Group actions on the domain X or range Y induce group actions on Y^{X}. Let ${ }_{G} X$ and ${ }_{H} Y$ be group actions.

- Then G acts on Y^{X} by

$$
G \times Y^{X} \rightarrow Y^{X}, \quad(g, f) \mapsto f \circ \bar{g}^{-1}
$$

- Then H acts on Y^{X} by

$$
H \times Y^{X} \rightarrow Y^{X}, \quad(h, f) \mapsto \bar{h} \circ f
$$

Close

- Then the direct product $H \times G$ acts on Y^{X} by

$$
(H \times G) \times Y^{X} \rightarrow Y^{X}, \quad((h, g), f) \mapsto \bar{h} \circ f \circ \bar{g}^{-1}
$$

The n-scale Z_{n}

In our model of an n-scale in each octave there are exactly n tones, which are equally distributed over each octave.

The n-scale Z_{n}

In our model of an n-scale in each octave there are exactly n tones, which are equally distributed over each octave. Often it is not important which octave a special tone belongs to, for that reason we collect all tones which are any number of octaves apart, into one pitch-class, ending up in exactly n pitch-classes in an n-scale.

The n-scale Z_{n}

FШF

They can be described as orbits under the natural action of the subgroup $n \mathbb{Z}:=\{n z \mid z \in \mathbb{Z}\}$ on the group \mathbb{Z}.
In our model of an n-scale in each octave there are exactly n tones, which are equally distributed over each octave. Often it is not important which octave a special tone belongs to, for that reason we collect all tones which are any number of octaves apart, into one pitch-class, ending up in exactly n pitch-classes in an n-scale.

The n-scale Z_{n}

In our model of an n-scale in each octave there are exactly n tones, which are equally distributed over each octave. Often it is not important which octave a special tone belongs to, for that reason we collect all tones which are any number of octaves apart, into one pitch-class, ending up in exactly n pitch-classes in an n-scale.

They can be described as orbits under the natural action of the subgroup $n \mathbb{Z}:=\{n z \mid z \in \mathbb{Z}\}$ on the group \mathbb{Z}.

For $i \in \mathbb{Z}$ the orbit $n \mathbb{Z}(i)$ is of the form $i+n \mathbb{Z}=\{i+n z \mid z \in \mathbb{Z}\}$. Consequently all tones with labels in this set are collected to one class, a pitch-class. These are just the tones which differ from the tone i any number of octaves.

The n-scale Z_{n}

In our model of an n-scale in each octave there are exactly n tones,

They can be described as orbits under the natural action of the subgroup $n \mathbb{Z}:=\{n z \mid z \in \mathbb{Z}\}$ on the group \mathbb{Z}.

The set of all orbits $n \mathbb{Z} \backslash \backslash \mathbb{Z}$ will be indicated as Z_{n}. It consists of exactly n objects. With the naturally motivated addition and multiplication, $\left(Z_{n},+, \cdot\right)$ is a commutative ring with 1 , the residue class ring modulo n.

Symmetry operators on Z_{n}

The operator transposing by one pitch-class is the bijection on Z_{n}

$$
T: Z_{n} \rightarrow Z_{n}, \quad i \mapsto T(i):=i+1
$$

Symmetry operators on Z_{n}

The operator transposing by one pitch-class is the bijection on Z_{n}

$$
T: Z_{n} \rightarrow Z_{n}, \quad i \mapsto T(i):=i+1
$$

The operator inversion at pitch-class $\mathbf{0}$ is the bijection on Z_{n}

$$
I: Z_{n} \rightarrow Z_{n}, \quad i \mapsto I(i):=-i .
$$

Symmetry operators on Z_{n}

The operator transposing by one pitch-class is the bijection on Z_{n}

$$
T: Z_{n} \rightarrow Z_{n}, \quad i \mapsto T(i):=i+1
$$

The operator inversion at pitch-class $\mathbf{0}$ is the bijection on Z_{n}

$$
I: Z_{n} \rightarrow Z_{n}, \quad i \mapsto I(i):=-i .
$$

Musically motivated permutation groups on Z_{n} :

Symmetry operators on Z_{n}

The operator transposing by one pitch-class is the bijection on Z_{n}

$$
T: Z_{n} \rightarrow Z_{n}, \quad i \mapsto T(i):=i+1
$$

The operator inversion at pitch-class $\mathbf{0}$ is the bijection on Z_{n}

$$
I: Z_{n} \rightarrow Z_{n}, \quad i \mapsto I(i):=-i
$$

Musically motivated permutation groups on Z_{n} :
$-\langle T\rangle$ consists of all powers T^{i}. It is a cyclic group C_{n} of order n.

Symmetry operators on Z_{n}

The operator transposing by one pitch-class is the bijection on Z_{n}

$$
T: Z_{n} \rightarrow Z_{n}, \quad i \mapsto T(i):=i+1
$$

The operator inversion at pitch-class $\mathbf{0}$ is the bijection on Z_{n}

$$
I: Z_{n} \rightarrow Z_{n}, \quad i \mapsto I(i):=-i
$$

Musically motivated permutation groups on Z_{n} :
$-\langle T\rangle$ consists of all powers T^{i}. It is a cyclic group C_{n} of order n.

- $\langle T, I\rangle$ consists of all possibilities to combine powers of T with the inversion operator I. It is a dihedral group D_{n} of order $2 n$ for $n \geq 3$.

Symmetry operators on Z_{n}

The operator transposing by one pitch-class is the bijection on Z_{n}

$$
T: Z_{n} \rightarrow Z_{n}, \quad i \mapsto T(i):=i+1
$$

The operator inversion at pitch-class $\mathbf{0}$ is the bijection on Z_{n}

$$
I: Z_{n} \rightarrow Z_{n}, \quad i \mapsto I(i):=-i
$$

Musically motivated permutation groups on Z_{n} :
$-\langle T\rangle$ consists of all powers T^{i}. It is a cyclic group C_{n} of order n.
$-\langle T, I\rangle$ consists of all possibilities to combine powers of T with the inversion operator I. It is a dihedral group D_{n} of order $2 n$ for $n \geq 3$. - $\operatorname{Aff}_{1}\left(Z_{n}\right):=\left\{\pi_{a, b} \mid a \in Z_{n}^{*}, b \in Z_{n}\right\}$ is the group of all affine mappings from Z_{n} to Z_{n}, with $\pi_{a, b}(i):=a i+b$.

Intervals, Chords and Rhythms

FUF
Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2-chords are called intervals.

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2 -chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.)

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2 -chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.) Let G be a musically motivated permutation group on Z_{n}. It makes sense to apply the elements of G to k-chords. The G orbit $G(S)$ of a k-chord $S \subseteq Z_{n}$ is the collection of all k-chords which are G-equivalent to S. Consequently the number of essentially different k-chords is the number of G-orbits on the set of all k-subsets of Z_{n}.

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2-chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.) Let G be a musically motivated permutation group on Z_{n}. It makes sense to apply the elements of G to k-chords. The G orbit $G(S)$ of a k-chord $S \subseteq Z_{n}$ is the collection of all k-chords which are G-equivalent to S. Consequently the number of essentially different k-chords is the number of G-orbits on the set of all k-subsets of Z_{n}.

$G \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12
C_{12}	1	6	19	43	66	80	66	43	19	6	1	1

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2-chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.) Let G be a musically motivated permutation group on Z_{n}. It makes sense to apply the elements of G to k-chords. The G orbit $G(S)$ of a k-chord $S \subseteq Z_{n}$ is the collection of all k-chords which are G-equivalent to S. Consequently the number of essentially different k-chords is the number of G-orbits on the set of all k-subsets of Z_{n}.

$G \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12
C_{12}	1	6	19	43	66	80	66	43	19	6	1	1
D_{12}	1	6	12	29	38	50	38	29	12	6	1	1

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2-chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.) Let G be a musically motivated permutation group on Z_{n}. It makes sense to apply the elements of G to k-chords. The G orbit $G(S)$ of a k-chord $S \subseteq Z_{n}$ is the collection of all k-chords which are G-equivalent to S. Consequently the number of essentially different k-chords is the number of G-orbits on the set of all k-subsets of Z_{n}.

$G \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12
C_{12}	1	6	19	43	66	80	66	43	19	6	1	1
D_{12}	1	6	12	29	38	50	38	29	12	6	1	1
$\operatorname{Aff}_{1}\left(Z_{12}\right)$	1	5	9	21	25	34	25	21	9	5	1	1

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2-chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.) Let G be a musically motivated permutation group on Z_{n}. It makes sense to apply the elements of G to k-chords. The G orbit $G(S)$ of a k-chord $S \subseteq Z_{n}$ is the collection of all k-chords which are G-equivalent to S. Consequently the number of essentially different k-chords is the number of G-orbits on the set of all k-subsets of Z_{n}.

$G \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12
C_{12}	1	6	19	43	66	80	66	43	19	6	1	1
D_{12}	1	6	12	29	38	50	38	29	12	6	1	1
$\operatorname{Aff}_{1}\left(Z_{12}\right)$	1	5	9	21	25	34	25	21	9	5	1	1

Extensions:

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2-chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.) Let G be a musically motivated permutation group on Z_{n}. It makes sense to apply the elements of G to k-chords. The G orbit $G(S)$ of a k-chord $S \subseteq Z_{n}$ is the collection of all k-chords which are G-equivalent to S. Consequently the number of essentially different k-chords is the number of G-orbits on the set of all k-subsets of Z_{n}.

$G \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12
C_{12}	1	6	19	43	66	80	66	43	19	6	1	1
D_{12}	1	6	12	29	38	50	38	29	12	6	1	1
$\operatorname{Aff}_{1}\left(Z_{12}\right)$	1	5	9	21	25	34	25	21	9	5	1	1

Extensions:

- Enumeration of self-complementary $n / 2$-chords.

Intervals, Chords and Rhythms

Any k-subset of Z_{n} is called a k-chord in Z_{n}. Especially 2-chords are called intervals. (Analogously, these subsets describe k-rhythms in an n-bar.) Let G be a musically motivated permutation group on Z_{n}. It makes sense to apply the elements of G to k-chords. The G orbit $G(S)$ of a k-chord $S \subseteq Z_{n}$ is the collection of all k-chords which are G-equivalent to S. Consequently the number of essentially different k-chords is the number of G-orbits on the set of all k-subsets of Z_{n}.

$G \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12
C_{12}	1	6	19	43	66	80	66	43	19	6	1	1
D_{12}	1	6	12	29	38	50	38	29	12	6	1	1
$\operatorname{Aff}_{1}\left(Z_{12}\right)$	1	5	9	21	25	34	25	21	9	5	1	1

Extensions:

- Enumeration of self-complementary $n / 2$-chords.
- Determination of the interval structure of non-equivalent chords.

Motives

When speaking about motives we first have to find all possible combinations of beats in an m-bar Z_{m} and pitch-classes in an n-scale Z_{n}. The set of all these combinations is the product $Z_{m} \times Z_{n}$.

Motives

When speaking about motives we first have to find all possible combinations of beats in an m-bar Z_{m} and pitch-classes in an n-scale Z_{n}. The set of all these combinations is the product $Z_{m} \times Z_{n}$.

Then for $1 \leq k \leq m n$ each k-subset S of $Z_{m} \times Z_{n}$ is a k-motive. When $(i, j) \in Z_{m} \times Z_{n}$ belongs to the motive S it means that a tone of pitch-class j occurs at the beat i in the motive S.

Motives

When speaking about motives we first have to find all possible combinations of beats in an m-bar Z_{m} and pitch-classes in an n-scale Z_{n}. The set of all these combinations is the product $Z_{m} \times Z_{n}$.

Then for $1 \leq k \leq m n$ each k-subset S of $Z_{m} \times Z_{n}$ is a k-motive. When $(i, j) \in Z_{m} \times Z_{n}$ belongs to the motive S it means that a tone of pitch-class j occurs at the beat i in the motive S.

In the case $m=n$, Mazzola motivated that $\operatorname{Aff}_{2}\left(Z_{n}\right)$ is a musically motivated group.

Motives

When speaking about motives we first have to find all possible combinations of beats in an m-bar Z_{m} and pitch-classes in an n-scale Z_{n}. The set of all these combinations is the product $Z_{m} \times Z_{n}$.

Then for $1 \leq k \leq m n$ each k-subset S of $Z_{m} \times Z_{n}$ is a k-motive. When $(i, j) \in Z_{m} \times Z_{n}$ belongs to the motive S it means that a tone of pitch-class j occurs at the beat i in the motive S.

In the case $m=n$, Mazzola motivated that $\operatorname{Aff}_{2}\left(Z_{n}\right)$ is a musically motivated group.

For $n=m=12$ the numbers of k-motives for small values of k are the coefficients of z^{k} in
$1+z+5 z^{2}+26 z^{3}+216 z^{4}+2024 z^{5}+27806 z^{6}+417209 z^{7}+$ $6345735 z^{8}+90590713 z^{9}+1190322956 z^{10}+\ldots$.

Tone-rows

For $n \geq 3$ a tone-row in Z_{n} is a bijective mapping $f: Z_{n} \rightarrow Z_{n}$ where $f(i)$ is the tone which occurs in i-th position in the tone-row.

Tone-rows

For $n \geq 3$ a tone-row in Z_{n} is a bijective mapping $f: Z_{n} \rightarrow Z_{n}$ where $f(i)$ is the tone which occurs in i-th position in the tone-row.

Usually two tone-rows f_{1}, f_{2} are considered to be similar if f_{1} can be constructed by transposing, inversion and retrograde inversion R of f_{2}. Thus the similarity classes of tone-rows are the $D_{n} \times\langle R\rangle$ orbits on the set of all bijections on Z_{n}.

Tone-rows

For $n \geq 3$ a tone-row in Z_{n} is a bijective mapping $f: Z_{n} \rightarrow Z_{n}$ where $f(i)$ is the tone which occurs in i-th position in the tone-row.

Usually two tone-rows f_{1}, f_{2} are considered to be similar if f_{1} can be constructed by transposing, inversion and retrograde inversion R of f_{2}. Thus the similarity classes of tone-rows are the $D_{n} \times\langle R\rangle$ orbits on the set of all bijections on Z_{n}.

For $n \geq 3$ the number of similarity classes of tone-rows in Z_{n} is

$$
\begin{cases}\frac{1}{4}((n-1)!+(n-1)!!) & \text { if } n \equiv 1 \bmod 2 \\ \frac{1}{4}\left((n-1)!+(n-2)!!\left(\frac{n}{2}+1\right)\right) & \text { if } n \equiv 0 \bmod 2\end{cases}
$$

Tone-rows

For $n \geq 3$ a tone-row in Z_{n} is a bijective mapping $f: Z_{n} \rightarrow Z_{n}$ where $f(i)$ is the tone which occurs in i-th position in the tone-row.

Usually two tone-rows f_{1}, f_{2} are considered to be similar if f_{1} can be constructed by transposing, inversion and retrograde inversion R of f_{2}. Thus the similarity classes of tone-rows are the $D_{n} \times\langle R\rangle$ orbits on the set of all bijections on Z_{n}.

For $n \geq 3$ the number of similarity classes of tone-rows in Z_{n} is

$$
\begin{cases}\frac{1}{4}((n-1)!+(n-1)!!) & \text { if } n \equiv 1 \bmod 2 \\ \frac{1}{4}\left((n-1)!+(n-2)!!\left(\frac{n}{2}+1\right)\right) & \text { if } n \equiv 0 \bmod 2\end{cases}
$$

Especially there are 9985920 classes of tone-rows in 12-tone music.

Mosaics

A partition π of Z_{n} is a collection of subsets of Z_{n}, such that the empty set is not an element of π and such that for each $i \in Z_{n}$ there is exactly one $P \in \pi$ with $i \in P$.

Mosaics

A partition π of Z_{n} is a collection of subsets of Z_{n}, such that the empty set is not an element of π and such that for each $i \in Z_{n}$ there is exactly one $P \in \pi$ with $i \in P$. Let Π_{n} denote the set of all partitions of Z_{n}. A permutation group G of Z_{n} induces the following group action of G on Π_{n} :

$$
G \times \Pi_{n} \rightarrow \Pi_{n}, \quad(g, \pi) \mapsto g \pi:=\{g P \mid P \in \pi\},
$$

where $g P:=\{g i \mid i \in P\}$.

Mosaics

A partition π of Z_{n} is a collection of subsets of Z_{n}, such that the empty set is not an element of π and such that for each $i \in Z_{n}$ there is exactly one $P \in \pi$ with $i \in P$. Let Π_{n} denote the set of all partitions of Z_{n}. A permutation group G of Z_{n} induces the following group action of G on Π_{n} :

$$
G \times \Pi_{n} \rightarrow \Pi_{n}, \quad(g, \pi) \mapsto g \pi:=\{g P \mid P \in \pi\}
$$

where $g P:=\{g i \mid i \in P\}$. The G-orbits on Π_{n} are called G-mosaics.

Mosaics

A partition π of Z_{n} is a collection of subsets of Z_{n}, such that the empty set is not an element of π and such that for each $i \in Z_{n}$ there is exactly one $P \in \pi$ with $i \in P$. Let Π_{n} denote the set of all partitions of Z_{n}. A permutation group G of Z_{n} induces the following group action of G on Π_{n} :

$$
G \times \Pi_{n} \rightarrow \Pi_{n}, \quad(g, \pi) \mapsto g \pi:=\{g P \mid P \in \pi\}
$$

where $g P:=\{g i \mid i \in P\}$. The G-orbits on Π_{n} are called G-mosaics. Number of G-mosaics consisting of k blocks.

$G \backslash k$	1	2	3	4	5	6	7	8	9	10	11
C_{12}	1	179	7254	51075	115100	110462	52376	13299	1873	147	6
D_{12}	1	121	3838	26148	58400	56079	26696	6907	1014	96	6
$\operatorname{Aff}_{1}\left(Z_{12}\right)$	1	87	2155	13730	30121	28867	13835	3667	571	63	5
1											

In conclusion there are $351773 C_{12}$-mosaics, $179307 D_{12}$-mosaics and $93103 \operatorname{Aff}_{1}\left(Z_{12}\right)$-mosaics in twelve tone music.

Canons

A canon is a subset $K \subseteq Z_{n}$ together with a covering of K by pairwise different subsets $V_{i} \neq \emptyset$ for $1 \leq i \leq t$, the voices, where $t \geq 1$ is the number of voices of K, in other words

Canons

A canon is a subset $K \subseteq Z_{n}$ together with a covering of K by pairwise different subsets $V_{i} \neq \emptyset$ for $1 \leq i \leq t$, the voices, where $t \geq 1$ is the number of voices of K, in other words

$$
K=\bigcup_{i=1}^{t} V_{i}
$$

Canons

A canon is a subset $K \subseteq Z_{n}$ together with a covering of K by pairwise different subsets $V_{i} \neq \emptyset$ for $1 \leq i \leq t$, the voices, where $t \geq 1$ is the number of voices of K, in other words

$$
K=\bigcup_{i=1}^{t} V_{i}
$$

such that for all $i, j \in\{1, \ldots, t\}$

1. the set V_{i} can be obtained from V_{j} by a translation of Z_{n},
2. there is only the identity translation which maps V_{i} to V_{i},
3. the set of differences in K generates Z_{n}, i.e.
$\langle K-K\rangle:=\langle k-l \mid k, l \in K\rangle=Z_{n}$.

Canons

A canon is a subset $K \subseteq Z_{n}$ together with a covering of K by $t \geq 1$ is the number of voices of K, in other words

$$
K=\bigcup_{i=1}^{t} V_{i}
$$

such that for all $i, j \in\{1, \ldots, t\}$

1. the set V_{i} can be obtained from V_{j} by a translation of Z_{n},
2. there is only the identity translation which maps V_{i} to V_{i}, 3. the set of differences in K generates Z_{n}, i.e.
$\langle K-K\rangle:=\langle k-l \mid k, l \in K\rangle=Z_{n}$.
We prefer to write a canon K as a set of its subsets V_{i}. pairwise different subsets $V_{i} \neq \emptyset$ for $1 \leq i \leq t$, the voices, where

Canons

A canon is a subset $K \subseteq Z_{n}$ together with a covering of K by pairwise different subsets $V_{i} \neq \emptyset$ for $1 \leq i \leq t$, the voices, where $t \geq 1$ is the number of voices of K, in other words

$$
K=\bigcup_{i=1}^{t} V_{i}
$$

such that for all $i, j \in\{1, \ldots, t\}$

1. the set V_{i} can be obtained from V_{j} by a translation of Z_{n},
2. there is only the identity translation which maps V_{i} to V_{i},
3. the set of differences in K generates Z_{n}, i.e.
$\langle K-K\rangle:=\langle k-l \mid k, l \in K\rangle=Z_{n}$.
We prefer to write a canon K as a set of its subsets V_{i}.
Two canons $K=\left\{V_{1}, \ldots, V_{t}\right\}$ and $L=\left\{W_{1}, \ldots, W_{s}\right\}$ are called isomorphic if $s=t$ and if there exists a translation T of Z_{n} and a permutation π in the symmetric group S_{t} such that $T\left(V_{i}\right)=W_{\pi(i)}$ for $1 \leq i \leq t$. Then obviously $T(K)=L$.

A canon can be described as a pair (L, A), where L is the inner and A the outer rhythm of the canon.

A canon can be described as a pair (L, A), where L is the inner and A the outer rhythm of the canon. In other words, the rhythm of one voice is described by L and the distribution of the different voices is described by A, i.e. the onsets of the different voices are $a+L$ for $a \in A$.

A canon can be described as a pair (L, A), where L is the inner and A the outer rhythm of the canon. In other words, the rhythm of one voice is described by L and the distribution of the different voices is described by A, i.e. the onsets of the different voices are $a+L$ for $a \in A$.

Theorem. The number of isomorphism classes of canons in Z_{n} is

$$
K_{n}:=\sum_{d \mid n} \mu(d) \lambda(n / d) \alpha(n / d),
$$

where μ is the Moebius function, $\lambda(1)=1$,

$$
\lambda(r)=\frac{1}{r} \sum_{s \mid r} \mu(s) 2^{r / s} \text { for } r>1
$$

$$
\alpha(r)=\frac{1}{r} \sum_{s \mid r} \varphi(s) 2^{r / s}-1 \text { for } r \geq 1
$$

where φ is the Euler totient function.

Rhythmic Tiling Canons

FUF

```
Home Page
```

A canon is a rhythmic tiling canon if

- the voices V_{i} cover entirely the cyclic group Z_{n},
- the voices V_{i} are pairwise disjoint.

Rhythmic Tiling Canons

A canon is a rhythmic tiling canon if

- the voices V_{i} cover entirely the cyclic group Z_{n},
- the voices V_{i} are pairwise disjoint.

Classification of rhythmic tiling canons by computing complete lists of representatives. (T_{n} or K_{n} are the numbers of rhythmic tiling canons or canons respectively.)

n	T_{n}	K_{n}
2	1	1
3	1	5
4	2	13
5	1	41
6	3	110
7	1	341
8	6	1035
9	4	3298

Rhythmic Tiling Canons

A canon is a rhythmic tiling canon if

- the voices V_{i} cover entirely the cyclic group Z_{n},
- the voices V_{i} are pairwise disjoint.

Classification of rhythmic tiling canons by computing complete lists of representatives. (T_{n} or K_{n} are the numbers of rhythmic tiling canons or canons respectively.)

n	T_{n}	K_{n}	n	T_{n}	K_{n}
2	1	1	10	6	10550
3	1	5	11	1	34781
4	2	13	12	23	117455
5	1	41	13	1	397529
6	3	110	14	13	1.370798
7	1	341	15	25	4.780715
8	6	1035	16	49	16788150
9	4	3298	17	1	59451809

Regular Complementary Canons of Maximal Category

A rhythmic tiling canon described by (L, A) is a regular complementary canon of maximal category (RCMC-canon) if both L and A are aperiodic.

Regular Complementary Canons of Maximal Category

A rhythmic tiling canon described by (L, A) is a regular complementary canon of maximal category (RCMC-canon) if both L and A are aperiodic.

Dan T. Vuza showed that these canons occur only for certain values of n, actually only for non-Hajós-groups Z_{n}. The smallest n for which Z_{n} is not a Hajós-group is $n=72$.

Regular Complementary Canons of Maximal Category

A rhythmic tiling canon described by (L, A) is a regular complementary canon of maximal category (RCMC-canon) if both L and A are aperiodic.

Dan T. Vuza showed that these canons occur only for certain values of n, actually only for non-Hajós-groups Z_{n}. The smallest n for which Z_{n} is not a Hajós-group is $n=72$.
Z_{n} is not a Hajós group if and only if n can be expressed in the form $p_{1} p_{2} n_{1} n_{2} n_{3}$ with p_{1}, p_{2} primes, $n_{i} \geq 2$ for $1 \leq i \leq 3$, and $\operatorname{gcd}\left(n_{1} p_{1}, n_{2} p_{2}\right)=1$.

Vuza's Algorithm

If Z_{n} is not a Hajós group, Vuza presents an algorithm for constructing two aperiodic subsets L and A of Z_{n}, such that $|L|=n_{1} n_{2},|A|=p_{1} p_{2} n_{3}$, and $L+A=Z_{n}$.

Vuza's Algorithm

If Z_{n} is not a Hajós group, Vuza presents an algorithm for constructing two aperiodic subsets L and A of Z_{n}, such that $|L|=n_{1} n_{2},|A|=p_{1} p_{2} n_{3}$, and $L+A=Z_{n}$.

Hence, L or A can serve as the inner rhythm and the other set as the outer rhythm of such a canon.

Vuza's Algorithm

If Z_{n} is not a Hajós group, Vuza presents an algorithm for constructing two aperiodic subsets L and A of Z_{n}, such that $|L|=n_{1} n_{2},|A|=p_{1} p_{2} n_{3}$, and $L+A=Z_{n}$.

Hence, L or A can serve as the inner rhythm and the other set as the outer rhythm of such a canon.

Moreover, it is important to mention that there is some freedom for constructing these two sets, and each of these two sets can be constructed independently from the other one.

Vuza's Algorithm

If Z_{n} is not a Hajós group, Vuza presents an algorithm for constructing two aperiodic subsets L and A of Z_{n}, such that $|L|=n_{1} n_{2},|A|=p_{1} p_{2} n_{3}$, and $L+A=Z_{n}$.

Hence, L or A can serve as the inner rhythm and the other set as the outer rhythm of such a canon.

Moreover, it is important to mention that there is some freedom for constructing these two sets, and each of these two sets can be constructed independently from the other one.

He also proves that when L and A describe an RCMC-canon, then also $(k L, A),(k L, k A)$ have this property for all $k \in Z_{n}^{*}$.

Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal category which can be constructed by his algorithm.

Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p_{1}	p_{2}	n_{1}	n_{2}	n_{3}	$\# L$	$\# A$	$\#$
2	3	2	3	2	3	6	18

Enumeration of Vuza Canons

FUF
A Vuza canon is a regular complementary canon of maximal category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p_{1}	p_{2}	n_{1}	n_{2}	n_{3}	$\# L$	$\# A$	$\#$
2	3	2	3	2	3	6	18
2	3	4	3	2	6	36	216

Enumeration of Vuza Canons

FUF
A Vuza canon is a regular complementary canon of maximal category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p_{1}	p_{2}	n_{1}	n_{2}	n_{3}	$\# L$	$\# A$	$\#$
2	3	2	3	2	3	6	18
2	3	4	3	2	6	36	216
2	3	4	5	2	34	120	4080

Enumeration of Vuza Canons

FUF
A Vuza canon is a regular complementary canon of maximal category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p_{1}	p_{2}	n_{1}	n_{2}	n_{3}	$\# L$	$\# A$	$\#$
2	3	2	3	2	3	6	18
2	3	4	3	2	6	36	216
2	3	4	5	2	34	120	4080
2	3	2	3	4	3	2808	8424

Enumeration of Vuza Canons

FUF
A Vuza canon is a regular complementary canon of maximal category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p_{1}	p_{2}	n_{1}	n_{2}	n_{3}	$\# L$	$\# A$	$\#$
2	3	2	3	2	3	6	18
2	3	4	3	2	6	36	216
2	3	4	5	2	34	120	4080
2	3	2	3	4	3	2808	8424
2	5	2	3	2	9	6	54

Enumeration of Vuza Canons

FUF
A Vuza canon is a regular complementary canon of maximal category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p_{1}	p_{2}	n_{1}	n_{2}	n_{3}	$\# L$	$\# A$	$\#$
2	3	2	3	2	3	6	18
2	3	4	3	2	6	36	216
2	3	4	5	2	34	120	4080
2	3	2	3	4	3	2808	8424
2	5	2	3	2	9	6	54
2	5	2	5	2	125	20	2500

Do there exist RCMC-canons which are not Vuza

canons?

Do there exist RCMC-canons which are not Vuza canons?

The answer is:

Do there exist RCMC-canons which are not Vuza canons?

The answer is: YES!

Do there exist RCMC-canons which are not Vuza

canons?

The answer is: YES!
Construction: Let (L, A) be an RCMC-canon. Construct L^{\prime} by replacing in L each occurrence of 1 by 11 and 0 by 00 . And construct A^{\prime} by replacing each 1 in A by 01 and 0 in A by 00 . In musical terms we divide each onset into 2 onsets. This way we construct from the RCMC-canon (L, A) of length n an RCMC-canon (L^{\prime}, A^{\prime}) of length $2 n$.

Do there exist RCMC-canons which are not Vuza

 canons?Trite Page
The answer is: YES!
Construction: Let (L, A) be an RCMC-canon. Construct L^{\prime} by replacing in L each occurrence of 1 by 11 and 0 by 00 . And construct A^{\prime} by replacing each 1 in A by 01 and 0 in A by 00 . In musical terms we divide each onset into 2 onsets. This way we construct from the RCMC-canon (L, A) of length n an RCMC-canon (L^{\prime}, A^{\prime}) of length $2 n$.

Among the 216 RCMC-canons of length $2 \cdot 72=144$ with $|L|=12$ we did not find a canon which was constructed in this way from the 18 canons of length 72 .

From L equal to
[$0,0$, $0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]$

From L equal to
$[0,0$, $0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]$ and A equal to
[$0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,0$, $0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1]$

From L equal to
[$0,0$,

FWF Home Page

Trie Page Conients $0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]$ and A equal to
[$0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,0$, $0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1]$ we get the canon with L^{\prime} equal to
$[0,0$, 0, 0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, $0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1]$

From L equal to

[$0,0$, 0, 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] and A equal to
[$0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,0$, $0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1]$ we get the canon with L^{\prime} equal to
$[0,0$, $0,0$, $0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1$, $0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1]$ and A^{\prime} equal to
[$0,0$, 0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0, $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1]$

From L equal to

[$0,0$, 0, 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] and A equal to
[$0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,0$, $0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1]$ we get the canon with L^{\prime} equal to
$[0,0$, $0,0$, $0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1$, $0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1]$ and A^{\prime} equal to
[$0,0$, 0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0, $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1]$

Contents

Methods and Results in Musical Enumeration Theory

Discrete Structures
Classification under Group Actions
Example: Classification of Graphs on 4 vertices

Group Actions
Stabilizers and Fixed Points
Symmetry types of mappings
The n-scale Z_{n}
Intervals, Chords and Rhythms
Tone-rows
Canons
Regular Complementary Canons of Maximal Category
Vuza's Algorithm
Enumeration of Vuza Canons
Do there exist RCMC-canons which are not Vuza canons?

