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Third International Seminar on Mathematical Music Theory and
Music Informatics

University Zürich, October 24 – October 26, 2002

Group actions are the standard tool for the classification of discrete
structures. We will discuss the following topics:
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Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and
Music Informatics

University Zürich, October 24 – October 26, 2002

Group actions are the standard tool for the classification of discrete
structures. We will discuss the following topics:
— what are discrete structures,
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Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and
Music Informatics

University Zürich, October 24 – October 26, 2002

Group actions are the standard tool for the classification of discrete
structures. We will discuss the following topics:
— what are discrete structures,
— basic facts about classification under group actions,
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Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and
Music Informatics

University Zürich, October 24 – October 26, 2002

Group actions are the standard tool for the classification of discrete
structures. We will discuss the following topics:
— what are discrete structures,
— basic facts about classification under group actions,
— some applications in music theory,
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Methods and Results in Musical Enumeration Theory

Harald Fripertinger
Karl-Franzens-Universität Graz

Third International Seminar on Mathematical Music Theory and
Music Informatics

University Zürich, October 24 – October 26, 2002

Group actions are the standard tool for the classification of discrete
structures. We will discuss the following topics:
— what are discrete structures,
— basic facts about classification under group actions,
— some applications in music theory,
— some results on the enumeration of canons.
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Discrete Structures

Discrete structures are objects which can be constructed as:
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Discrete Structures

Discrete structures are objects which can be constructed as:
– subsets, unions, products of finite sets,
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Discrete Structures

Discrete structures are objects which can be constructed as:
– subsets, unions, products of finite sets,
– mappings between finite sets,
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Discrete Structures

Discrete structures are objects which can be constructed as:
– subsets, unions, products of finite sets,
– mappings between finite sets,
– bijections, linear orders on finite sets,
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Discrete Structures

Discrete structures are objects which can be constructed as:
– subsets, unions, products of finite sets,
– mappings between finite sets,
– bijections, linear orders on finite sets,
– equivalence classes on finite sets,
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Discrete Structures

Discrete structures are objects which can be constructed as:
– subsets, unions, products of finite sets,
– mappings between finite sets,
– bijections, linear orders on finite sets,
– equivalence classes on finite sets,
– vector spaces over finite fields, . . .
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Discrete Structures

Discrete structures are objects which can be constructed as:
– subsets, unions, products of finite sets,
– mappings between finite sets,
– bijections, linear orders on finite sets,
– equivalence classes on finite sets,
– vector spaces over finite fields, . . .

Examples: graphs, necklaces, designs, codes, matroids, switching
functions, molecules in chemistry, spin-configurations in physics,
objects of local music theory.
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Classification under Group Actions

The process of classification provides more detailed information
about the objects in a discrete structure. We distinguish different
steps in the process of classification:
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Classification under Group Actions

The process of classification provides more detailed information
about the objects in a discrete structure. We distinguish different
steps in the process of classification:

step 1: Determine the number of different objects.
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Classification under Group Actions

The process of classification provides more detailed information
about the objects in a discrete structure. We distinguish different
steps in the process of classification:

step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties.
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Classification under Group Actions

The process of classification provides more detailed information
about the objects in a discrete structure. We distinguish different
steps in the process of classification:

step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties.
step 3: Determine a complete list of the elements of a discrete
structure.
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Classification under Group Actions

The process of classification provides more detailed information
about the objects in a discrete structure. We distinguish different
steps in the process of classification:

step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties.
step 3: Determine a complete list of the elements of a discrete
structure.
step 4: Generate the objects of a discrete structure uniformly at
random.
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Classification under Group Actions

The process of classification provides more detailed information
about the objects in a discrete structure. We distinguish different
steps in the process of classification:

step 1: Determine the number of different objects.
step 2: Determine the number of objects with certain properties.
step 3: Determine a complete list of the elements of a discrete
structure.
step 4: Generate the objects of a discrete structure uniformly at
random.

Often the elements of a discrete structure are themselves classes of
objects which are considered to be equivalent. These classes collect
all those elements which are not essentially different. (Relabellings
of labelled structures, or otherwise naturally motivated equivalence
relations.)
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Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges,
where each edge connects exactly two different vertices.
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Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges,
where each edge connects exactly two different vertices.

step 1: There are 11 graphs on 4 vertices.
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Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges,
where each edge connects exactly two different vertices.

step 1: There are 11 graphs on 4 vertices.
step 2: There exists exactly one graph with 0, 1, 5 or 6 edges; two
graphs with 2 or 4 edges; three graphs with 3 edges.
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Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges,
where each edge connects exactly two different vertices.

step 1: There are 11 graphs on 4 vertices.
step 2: There exists exactly one graph with 0, 1, 5 or 6 edges; two
graphs with 2 or 4 edges; three graphs with 3 edges.
step 3:
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Example: Classification of Graphs on 4 vertices

An unlabelled graph is a set of vertices together with a set of edges,
where each edge connects exactly two different vertices.

step 1: There are 11 graphs on 4 vertices.
step 2: There exists exactly one graph with 0, 1, 5 or 6 edges; two
graphs with 2 or 4 edges; three graphs with 3 edges.
step 3:
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The standard tool for the classification of discrete structures are
group actions.
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Group Actions

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

∗:G×X → X ∗ (g,x) 7→ g∗x
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Group Actions

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

∗:G×X → X ∗ (g,x) 7→ g∗x

such that

(g1g2)∗x = g1∗ (g2∗x) g1,g2 ∈ G, x∈ X
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Group Actions

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

∗:G×X → X ∗ (g,x) 7→ g∗x

such that

(g1g2)∗x = g1∗ (g2∗x) g1,g2 ∈ G, x∈ X

and
1∗x = x x∈ X.
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Group Actions

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

∗:G×X → X ∗ (g,x) 7→ g∗x

such that

(g1g2)∗x = g1∗ (g2∗x) g1,g2 ∈ G, x∈ X

and
1∗x = x x∈ X.

Notation: We usually write gx instead of g∗x.
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Group Actions

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

∗:G×X → X ∗ (g,x) 7→ g∗x

such that

(g1g2)∗x = g1∗ (g2∗x) g1,g2 ∈ G, x∈ X

and
1∗x = x x∈ X.

Notation: We usually write gx instead of g∗x.
A group action will be indicated as GX.
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Group Actions

A multiplicative group G with neutral element 1 acts on a set X if
there exists a mapping

∗:G×X → X ∗ (g,x) 7→ g∗x

such that

(g1g2)∗x = g1∗ (g2∗x) g1,g2 ∈ G, x∈ X

and
1∗x = x x∈ X.

Notation: We usually write gx instead of g∗x.
A group action will be indicated as GX.
If G and X are finite sets, then we speak of a finite group action .
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Orbits under Group Actions

A group action GX defines the following equivalence relation on X.
x1 ∼ x2 if and only if there is some g∈ G such that x2 = gx1.
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Orbits under Group Actions

A group action GX defines the following equivalence relation on X.
x1 ∼ x2 if and only if there is some g∈ G such that x2 = gx1. The
equivalence classes G(x) with respect to ∼ are the orbits of G on
X. Hence, the orbit of x under the action of G is

G(x) = {gx | g∈ G} .
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Orbits under Group Actions

A group action GX defines the following equivalence relation on X.
x1 ∼ x2 if and only if there is some g∈ G such that x2 = gx1. The
equivalence classes G(x) with respect to ∼ are the orbits of G on
X. Hence, the orbit of x under the action of G is

G(x) = {gx | g∈ G} .

The set of orbits of G on X is indicated as

G\\X := {G(x) | x∈ X} .
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Orbits under Group Actions

A group action GX defines the following equivalence relation on X.
x1 ∼ x2 if and only if there is some g∈ G such that x2 = gx1. The
equivalence classes G(x) with respect to ∼ are the orbits of G on
X. Hence, the orbit of x under the action of G is

G(x) = {gx | g∈ G} .

The set of orbits of G on X is indicated as

G\\X := {G(x) | x∈ X} .

Theorem. The equivalence classes of any equivalence relation can
be represented as orbits under a suitable group action.
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Stabilizers and Fixed Points

Let GX be a group action. For each x∈ X the stabilizer Gx of x is
the set of all group elements which do not change x, in other words

Gx := {g∈ G | gx= x} .

It is a subgroup of G.
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Stabilizers and Fixed Points

Let GX be a group action. For each x∈ X the stabilizer Gx of x is
the set of all group elements which do not change x, in other words

Gx := {g∈ G | gx= x} .

It is a subgroup of G.

Lagrange Theorem. If GX is a finite group action then the size of
the orbit of x∈ X equals

|G(x)|= |G|
|Gx|

.
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Stabilizers and Fixed Points

Let GX be a group action. For each x∈ X the stabilizer Gx of x is
the set of all group elements which do not change x, in other words

Gx := {g∈ G | gx= x} .

It is a subgroup of G.

Lagrange Theorem. If GX is a finite group action then the size of
the orbit of x∈ X equals

|G(x)|= |G|
|Gx|

.

Finally, the set of all fixed points of g∈ G is denoted by

Xg := {x∈ X | gx= x} .
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma.
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|=
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|

Proof.

∑
g∈G

|Xg|=
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|

Proof.

∑
g∈G

|Xg|= ∑
g∈G

∑
x:gx=x

1 =
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|

Proof.

∑
g∈G

|Xg|= ∑
g∈G

∑
x:gx=x

1 = ∑
x∈X

∑
g:gx=x

1 =
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|

Proof.

∑
g∈G

|Xg|= ∑
g∈G

∑
x:gx=x

1 = ∑
x∈X

∑
g:gx=x

1 = ∑
x∈X

|Gx|=
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|

Proof.

∑
g∈G

|Xg|= ∑
g∈G

∑
x:gx=x

1 = ∑
x∈X

∑
g:gx=x

1 = ∑
x∈X

|Gx|=

= |G|∑
x∈X

1
|G(x)|

=
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|

Proof.

∑
g∈G

|Xg|= ∑
g∈G

∑
x:gx=x

1 = ∑
x∈X

∑
g:gx=x

1 = ∑
x∈X

|Gx|=

= |G|∑
x∈X

1
|G(x)|

= |G| ∑
ω∈G\\X

∑
x∈ω

1
|ω|

=
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Enumeration under Group Actions

Let GX be finite group action. The main tool for determining the
number of different orbits is the

Cauchy Frobenius Lemma. The number of orbits under a finite
group action GX is the average number of fixed points.

|G\\X|= 1
|G| ∑g∈G

|Xg|

Proof.

∑
g∈G

|Xg|= ∑
g∈G

∑
x:gx=x

1 = ∑
x∈X

∑
g:gx=x

1 = ∑
x∈X

|Gx|=

= |G|∑
x∈X

1
|G(x)|

= |G| ∑
ω∈G\\X

∑
x∈ω

1
|ω|

= |G||G\\X|.
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Symmetry types of mappings

The most important applications of classification under group actions
can be described as mappings between two sets. Group actions on
the domain X or range Y induce group actions on YX.
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Symmetry types of mappings

The most important applications of classification under group actions
can be described as mappings between two sets. Group actions on
the domain X or range Y induce group actions on YX. Let GX and

HY be group actions.

— Then G acts on YX by

G×YX →YX, (g, f ) 7→ f ◦ ḡ−1.
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Symmetry types of mappings

The most important applications of classification under group actions
can be described as mappings between two sets. Group actions on
the domain X or range Y induce group actions on YX. Let GX and

HY be group actions.

— Then G acts on YX by

G×YX →YX, (g, f ) 7→ f ◦ ḡ−1.

— Then H acts on YX by

H×YX →YX, (h, f ) 7→ h̄◦ f .
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Symmetry types of mappings

The most important applications of classification under group actions
can be described as mappings between two sets. Group actions on
the domain X or range Y induce group actions on YX. Let GX and

HY be group actions.

— Then G acts on YX by

G×YX →YX, (g, f ) 7→ f ◦ ḡ−1.

— Then H acts on YX by

H×YX →YX, (h, f ) 7→ h̄◦ f .

— Then the direct product H×G acts on YX by

(H×G)×YX →YX, ((h,g), f ) 7→ h̄◦ f ◦ ḡ−1.
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The n-scale Zn

In our model of an n-scale in each octave there are exactly n tones,
which are equally distributed over each octave.
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The n-scale Zn

In our model of an n-scale in each octave there are exactly n tones,
which are equally distributed over each octave. Often it is not
important which octave a special tone belongs to, for that reason we
collect all tones which are any number of octaves apart, into one
pitch-class , ending up in exactly n pitch-classes in an n-scale.
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The n-scale Zn

In our model of an n-scale in each octave there are exactly n tones,
which are equally distributed over each octave. Often it is not
important which octave a special tone belongs to, for that reason we
collect all tones which are any number of octaves apart, into one
pitch-class , ending up in exactly n pitch-classes in an n-scale.

They can be described as orbits under the natural action of the
subgroup nZ := {nz| z∈ Z} on the group Z.
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The n-scale Zn

In our model of an n-scale in each octave there are exactly n tones,
which are equally distributed over each octave. Often it is not
important which octave a special tone belongs to, for that reason we
collect all tones which are any number of octaves apart, into one
pitch-class , ending up in exactly n pitch-classes in an n-scale.

They can be described as orbits under the natural action of the
subgroup nZ := {nz| z∈ Z} on the group Z.

For i ∈ Z the orbit nZ(i) is of the form i +nZ = {i +nz| z∈ Z}.
Consequently all tones with labels in this set are collected to one
class, a pitch-class. These are just the tones which differ from the
tone i any number of octaves.
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The n-scale Zn

In our model of an n-scale in each octave there are exactly n tones,
which are equally distributed over each octave. Often it is not
important which octave a special tone belongs to, for that reason we
collect all tones which are any number of octaves apart, into one
pitch-class , ending up in exactly n pitch-classes in an n-scale.

They can be described as orbits under the natural action of the
subgroup nZ := {nz| z∈ Z} on the group Z.

For i ∈ Z the orbit nZ(i) is of the form i +nZ = {i +nz| z∈ Z}.
Consequently all tones with labels in this set are collected to one
class, a pitch-class. These are just the tones which differ from the
tone i any number of octaves.

The set of all orbits nZ\\Z will be indicated as Zn. It consists of
exactly n objects. With the naturally motivated addition and
multiplication, (Zn,+, ·) is a commutative ring with 1, the residue
class ring modulo n.
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Symmetry operators on Zn

The operator transposing by one pitch-class is the bijection on Zn

T:Zn → Zn, i 7→ T(i) := i +1.
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Symmetry operators on Zn

The operator transposing by one pitch-class is the bijection on Zn

T:Zn → Zn, i 7→ T(i) := i +1.

The operator inversion at pitch-class 0 is the bijection on Zn

I :Zn → Zn, i 7→ I(i) :=−i.
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Symmetry operators on Zn

The operator transposing by one pitch-class is the bijection on Zn

T:Zn → Zn, i 7→ T(i) := i +1.

The operator inversion at pitch-class 0 is the bijection on Zn

I :Zn → Zn, i 7→ I(i) :=−i.

Musically motivated permutation groups on Zn:
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Symmetry operators on Zn

The operator transposing by one pitch-class is the bijection on Zn

T:Zn → Zn, i 7→ T(i) := i +1.

The operator inversion at pitch-class 0 is the bijection on Zn

I :Zn → Zn, i 7→ I(i) :=−i.

Musically motivated permutation groups on Zn:
— 〈T〉 consists of all powers T i. It is a cyclic group Cn of order n.
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Symmetry operators on Zn

The operator transposing by one pitch-class is the bijection on Zn

T:Zn → Zn, i 7→ T(i) := i +1.

The operator inversion at pitch-class 0 is the bijection on Zn

I :Zn → Zn, i 7→ I(i) :=−i.

Musically motivated permutation groups on Zn:
— 〈T〉 consists of all powers T i. It is a cyclic group Cn of order n.
— 〈T, I〉 consists of all possibilities to combine powers of T with the
inversion operator I . It is a dihedral group Dn of order 2n for n≥ 3.
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Symmetry operators on Zn

The operator transposing by one pitch-class is the bijection on Zn

T:Zn → Zn, i 7→ T(i) := i +1.

The operator inversion at pitch-class 0 is the bijection on Zn

I :Zn → Zn, i 7→ I(i) :=−i.

Musically motivated permutation groups on Zn:
— 〈T〉 consists of all powers T i. It is a cyclic group Cn of order n.
— 〈T, I〉 consists of all possibilities to combine powers of T with the
inversion operator I . It is a dihedral group Dn of order 2n for n≥ 3.
— Aff1(Zn) := {πa,b | a∈ Z∗

n, b∈ Zn} is the group of all affine
mappings from Zn to Zn, with πa,b(i) := ai+b.
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals .
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.)
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.) Let G be a musically motivated permutation group on Zn.
It makes sense to apply the elements of G to k-chords. The G orbit
G(S) of a k-chord S⊆ Zn is the collection of all k-chords which are
G-equivalent to S. Consequently the number of essentially different
k-chords is the number of G-orbits on the set of all k-subsets of Zn.
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.) Let G be a musically motivated permutation group on Zn.
It makes sense to apply the elements of G to k-chords. The G orbit
G(S) of a k-chord S⊆ Zn is the collection of all k-chords which are
G-equivalent to S. Consequently the number of essentially different
k-chords is the number of G-orbits on the set of all k-subsets of Zn.

G\k 1 2 3 4 5 6 7 8 9 10 11 12
C12 1 6 19 43 66 80 66 43 19 6 1 1
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.) Let G be a musically motivated permutation group on Zn.
It makes sense to apply the elements of G to k-chords. The G orbit
G(S) of a k-chord S⊆ Zn is the collection of all k-chords which are
G-equivalent to S. Consequently the number of essentially different
k-chords is the number of G-orbits on the set of all k-subsets of Zn.

G\k 1 2 3 4 5 6 7 8 9 10 11 12
C12 1 6 19 43 66 80 66 43 19 6 1 1
D12 1 6 12 29 38 50 38 29 12 6 1 1
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.) Let G be a musically motivated permutation group on Zn.
It makes sense to apply the elements of G to k-chords. The G orbit
G(S) of a k-chord S⊆ Zn is the collection of all k-chords which are
G-equivalent to S. Consequently the number of essentially different
k-chords is the number of G-orbits on the set of all k-subsets of Zn.

G\k 1 2 3 4 5 6 7 8 9 10 11 12
C12 1 6 19 43 66 80 66 43 19 6 1 1
D12 1 6 12 29 38 50 38 29 12 6 1 1

Aff1(Z12) 1 5 9 21 25 34 25 21 9 5 1 1
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.) Let G be a musically motivated permutation group on Zn.
It makes sense to apply the elements of G to k-chords. The G orbit
G(S) of a k-chord S⊆ Zn is the collection of all k-chords which are
G-equivalent to S. Consequently the number of essentially different
k-chords is the number of G-orbits on the set of all k-subsets of Zn.

G\k 1 2 3 4 5 6 7 8 9 10 11 12
C12 1 6 19 43 66 80 66 43 19 6 1 1
D12 1 6 12 29 38 50 38 29 12 6 1 1

Aff1(Z12) 1 5 9 21 25 34 25 21 9 5 1 1

Extensions:
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.) Let G be a musically motivated permutation group on Zn.
It makes sense to apply the elements of G to k-chords. The G orbit
G(S) of a k-chord S⊆ Zn is the collection of all k-chords which are
G-equivalent to S. Consequently the number of essentially different
k-chords is the number of G-orbits on the set of all k-subsets of Zn.

G\k 1 2 3 4 5 6 7 8 9 10 11 12
C12 1 6 19 43 66 80 66 43 19 6 1 1
D12 1 6 12 29 38 50 38 29 12 6 1 1

Aff1(Z12) 1 5 9 21 25 34 25 21 9 5 1 1

Extensions:
— Enumeration of self-complementary n/2-chords.
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Intervals, Chords and Rhythms

Any k-subset of Zn is called a k-chord in Zn. Especially 2-chords are
called intervals . (Analogously, these subsets describe k-rhythms in
an n-bar.) Let G be a musically motivated permutation group on Zn.
It makes sense to apply the elements of G to k-chords. The G orbit
G(S) of a k-chord S⊆ Zn is the collection of all k-chords which are
G-equivalent to S. Consequently the number of essentially different
k-chords is the number of G-orbits on the set of all k-subsets of Zn.

G\k 1 2 3 4 5 6 7 8 9 10 11 12
C12 1 6 19 43 66 80 66 43 19 6 1 1
D12 1 6 12 29 38 50 38 29 12 6 1 1

Aff1(Z12) 1 5 9 21 25 34 25 21 9 5 1 1

Extensions:
— Enumeration of self-complementary n/2-chords.
— Determination of the interval structure of non-equivalent chords.
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Motives

When speaking about motives we first have to find all possible
combinations of beats in an m-bar Zm and pitch-classes in an n-scale
Zn. The set of all these combinations is the product Zm×Zn.
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Motives

When speaking about motives we first have to find all possible
combinations of beats in an m-bar Zm and pitch-classes in an n-scale
Zn. The set of all these combinations is the product Zm×Zn.

Then for 1≤ k≤ mneach k-subset Sof Zm×Zn is a k-motive .
When (i, j) ∈ Zm×Zn belongs to the motive S it means that a tone of
pitch-class j occurs at the beat i in the motive S.
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Motives

When speaking about motives we first have to find all possible
combinations of beats in an m-bar Zm and pitch-classes in an n-scale
Zn. The set of all these combinations is the product Zm×Zn.

Then for 1≤ k≤ mneach k-subset Sof Zm×Zn is a k-motive .
When (i, j) ∈ Zm×Zn belongs to the motive S it means that a tone of
pitch-class j occurs at the beat i in the motive S.

In the case m= n, Mazzola motivated that Aff2(Zn) is a musically
motivated group.
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Motives

When speaking about motives we first have to find all possible
combinations of beats in an m-bar Zm and pitch-classes in an n-scale
Zn. The set of all these combinations is the product Zm×Zn.

Then for 1≤ k≤ mneach k-subset Sof Zm×Zn is a k-motive .
When (i, j) ∈ Zm×Zn belongs to the motive S it means that a tone of
pitch-class j occurs at the beat i in the motive S.

In the case m= n, Mazzola motivated that Aff2(Zn) is a musically
motivated group.

For n = m= 12 the numbers of k-motives for small values of k are
the coefficients of zk in
1+z+5z2+26z3+216z4+2024z5+27806z6+417209z7+
6345735z8+90590713z9+1190322956z10+ . . ..
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Tone-rows

For n≥ 3 a tone-row in Zn is a bijective mapping f :Zn → Zn where
f (i) is the tone which occurs in i-th position in the tone-row.
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Tone-rows

For n≥ 3 a tone-row in Zn is a bijective mapping f :Zn → Zn where
f (i) is the tone which occurs in i-th position in the tone-row.

Usually two tone-rows f1, f2 are considered to be similar if f1 can be
constructed by transposing, inversion and retrograde inversion R of
f2. Thus the similarity classes of tone-rows are the Dn×〈R〉 orbits
on the set of all bijections on Zn.
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Tone-rows

For n≥ 3 a tone-row in Zn is a bijective mapping f :Zn → Zn where
f (i) is the tone which occurs in i-th position in the tone-row.

Usually two tone-rows f1, f2 are considered to be similar if f1 can be
constructed by transposing, inversion and retrograde inversion R of
f2. Thus the similarity classes of tone-rows are the Dn×〈R〉 orbits
on the set of all bijections on Zn.

For n≥ 3 the number of similarity classes of tone-rows in Zn is
1
4

(
(n−1)! +(n−1)!!

)
if n≡ 1 mod 2

1
4

(
(n−1)! +(n−2)!!(n

2 +1)
)

if n≡ 0 mod 2.
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Tone-rows

For n≥ 3 a tone-row in Zn is a bijective mapping f :Zn → Zn where
f (i) is the tone which occurs in i-th position in the tone-row.

Usually two tone-rows f1, f2 are considered to be similar if f1 can be
constructed by transposing, inversion and retrograde inversion R of
f2. Thus the similarity classes of tone-rows are the Dn×〈R〉 orbits
on the set of all bijections on Zn.

For n≥ 3 the number of similarity classes of tone-rows in Zn is
1
4

(
(n−1)! +(n−1)!!

)
if n≡ 1 mod 2

1
4

(
(n−1)! +(n−2)!!(n

2 +1)
)

if n≡ 0 mod 2.

Especially there are 9985920 classes of tone-rows in 12-tone music.
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Mosaics

A partition π of Zn is a collection of subsets of Zn, such that the
empty set is not an element of π and such that for each i ∈ Zn there
is exactly one P∈ π with i ∈ P.
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Mosaics

A partition π of Zn is a collection of subsets of Zn, such that the
empty set is not an element of π and such that for each i ∈ Zn there
is exactly one P∈ π with i ∈ P. Let Πn denote the set of all partitions
of Zn. A permutation group G of Zn induces the following group
action of G on Πn:

G×Πn → Πn, (g,π) 7→ gπ := {gP | P∈ π} ,

where gP := {gi | i ∈ P}.
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Mosaics

A partition π of Zn is a collection of subsets of Zn, such that the
empty set is not an element of π and such that for each i ∈ Zn there
is exactly one P∈ π with i ∈ P. Let Πn denote the set of all partitions
of Zn. A permutation group G of Zn induces the following group
action of G on Πn:

G×Πn → Πn, (g,π) 7→ gπ := {gP | P∈ π} ,

where gP := {gi | i ∈ P}. The G-orbits on Πn are called G-mosaics .
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Mosaics

A partition π of Zn is a collection of subsets of Zn, such that the
empty set is not an element of π and such that for each i ∈ Zn there
is exactly one P∈ π with i ∈ P. Let Πn denote the set of all partitions
of Zn. A permutation group G of Zn induces the following group
action of G on Πn:

G×Πn → Πn, (g,π) 7→ gπ := {gP | P∈ π} ,

where gP := {gi | i ∈ P}. The G-orbits on Πn are called G-mosaics .
Number of G-mosaics consisting of k blocks.

G\k 1 2 3 4 5 6 7 8 9 10 11 12

C12 1 179 7254 51075 115100 110462 52376 13299 1873 147 6 1
D12 1 121 3838 26148 58400 56079 26696 6907 1014 96 6 1

Aff1(Z12) 1 87 2155 13730 30121 28867 13835 3667 571 63 5 1

In conclusion there are 351773 C12-mosaics, 179307 D12-mosaics
and 93103 Aff1(Z12)-mosaics in twelve tone music.
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Canons

A canon is a subset K ⊆ Zn together with a covering of K by
pairwise different subsets Vi 6= /0 for 1≤ i ≤ t, the voices, where
t ≥ 1 is the number of voices of K, in other words
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Canons

A canon is a subset K ⊆ Zn together with a covering of K by
pairwise different subsets Vi 6= /0 for 1≤ i ≤ t, the voices, where
t ≥ 1 is the number of voices of K, in other words

K =
t⋃

i=1

Vi,
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Canons

A canon is a subset K ⊆ Zn together with a covering of K by
pairwise different subsets Vi 6= /0 for 1≤ i ≤ t, the voices, where
t ≥ 1 is the number of voices of K, in other words

K =
t⋃

i=1

Vi,

such that for all i, j ∈ {1, . . . , t}
1. the set Vi can be obtained from Vj by a translation of Zn,
2. there is only the identity translation which maps Vi to Vi,
3. the set of differences in K generates Zn, i.e.
〈K−K〉 := 〈k− l | k, l ∈ K〉= Zn.
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Canons

A canon is a subset K ⊆ Zn together with a covering of K by
pairwise different subsets Vi 6= /0 for 1≤ i ≤ t, the voices, where
t ≥ 1 is the number of voices of K, in other words

K =
t⋃

i=1

Vi,

such that for all i, j ∈ {1, . . . , t}
1. the set Vi can be obtained from Vj by a translation of Zn,
2. there is only the identity translation which maps Vi to Vi,
3. the set of differences in K generates Zn, i.e.
〈K−K〉 := 〈k− l | k, l ∈ K〉= Zn.
We prefer to write a canon K as a set of its subsets Vi.
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Canons

A canon is a subset K ⊆ Zn together with a covering of K by
pairwise different subsets Vi 6= /0 for 1≤ i ≤ t, the voices, where
t ≥ 1 is the number of voices of K, in other words

K =
t⋃

i=1

Vi,

such that for all i, j ∈ {1, . . . , t}
1. the set Vi can be obtained from Vj by a translation of Zn,
2. there is only the identity translation which maps Vi to Vi,
3. the set of differences in K generates Zn, i.e.
〈K−K〉 := 〈k− l | k, l ∈ K〉= Zn.
We prefer to write a canon K as a set of its subsets Vi.
Two canons K = {V1, . . . ,Vt} and L = {W1, . . . ,Ws} are called
isomorphic if s= t and if there exists a translation T of Zn and a
permutation π in the symmetric group St such that T(Vi) = Wπ(i) for
1≤ i ≤ t. Then obviously T(K) = L.
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A canon can be described as a pair (L,A), where L is the inner and
A the outer rhythm of the canon.
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A canon can be described as a pair (L,A), where L is the inner and
A the outer rhythm of the canon. In other words, the rhythm of one
voice is described by L and the distribution of the different voices is
described by A, i.e. the onsets of the different voices are a+L for
a∈ A.
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A canon can be described as a pair (L,A), where L is the inner and
A the outer rhythm of the canon. In other words, the rhythm of one
voice is described by L and the distribution of the different voices is
described by A, i.e. the onsets of the different voices are a+L for
a∈ A.

Theorem. The number of isomorphism classes of canons in Zn is

Kn := ∑
d|n

µ(d)λ(n/d)α(n/d),

where µ is the Moebius function, λ(1) = 1,

λ(r) =
1
r ∑

s|r
µ(s)2r/s for r > 1,

α(r) =
1
r ∑

s|r
ϕ(s)2r/s−1 for r ≥ 1,

where ϕ is the Euler totient function.
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Rhythmic Tiling Canons

A canon is a rhythmic tiling canon if
— the voices Vi cover entirely the cyclic group Zn,
— the voices Vi are pairwise disjoint.
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Rhythmic Tiling Canons

A canon is a rhythmic tiling canon if
— the voices Vi cover entirely the cyclic group Zn,
— the voices Vi are pairwise disjoint.

Classification of rhythmic tiling canons by computing complete lists
of representatives. (Tn or Kn are the numbers of rhythmic tiling
canons or canons respectively.)

n Tn Kn

2 1 1
3 1 5
4 2 13
5 1 41
6 3 110
7 1 341
8 6 1035
9 4 3298
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Rhythmic Tiling Canons

A canon is a rhythmic tiling canon if
— the voices Vi cover entirely the cyclic group Zn,
— the voices Vi are pairwise disjoint.

Classification of rhythmic tiling canons by computing complete lists
of representatives. (Tn or Kn are the numbers of rhythmic tiling
canons or canons respectively.)

n Tn Kn

2 1 1
3 1 5
4 2 13
5 1 41
6 3 110
7 1 341
8 6 1035
9 4 3298

n Tn Kn

10 6 10550
11 1 34781
12 23 117455
13 1 397529
14 13 1.370798
15 25 4.780715
16 49 16788150
17 1 59451809
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Regular Complementary Canons of Maximal
Category

A rhythmic tiling canon described by (L,A) is a regular
complementary canon of maximal category (RCMC-canon) if
both L and A are aperiodic.

http://www.kfunigraz.ac.at/
http://www.fwf.ac.at/
http://www-ang.kfunigraz.ac.at/~fripert/


Home Page

Title Page

Contents

JJ II

J I

Page 19 of 24

Go Back

Full Screen

Close

Quit

Regular Complementary Canons of Maximal
Category

A rhythmic tiling canon described by (L,A) is a regular
complementary canon of maximal category (RCMC-canon) if
both L and A are aperiodic.

Dan T. Vuza showed that these canons occur only for certain values
of n, actually only for non-Haj ós-groups Zn. The smallest n for
which Zn is not a Hajós-group is n = 72.
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Regular Complementary Canons of Maximal
Category

A rhythmic tiling canon described by (L,A) is a regular
complementary canon of maximal category (RCMC-canon) if
both L and A are aperiodic.

Dan T. Vuza showed that these canons occur only for certain values
of n, actually only for non-Haj ós-groups Zn. The smallest n for
which Zn is not a Hajós-group is n = 72.

Zn is not a Hajós group if and only if n can be expressed in the form
p1p2n1n2n3 with p1, p2 primes, ni ≥ 2 for 1≤ i ≤ 3, and
gcd(n1p1,n2p2) = 1.
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Vuza’s Algorithm

If Zn is not a Hajós group, Vuza presents an algorithm for
constructing two aperiodic subsets L and A of Zn, such that
|L|= n1n2, |A|= p1p2n3, and L+A = Zn.
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Vuza’s Algorithm

If Zn is not a Hajós group, Vuza presents an algorithm for
constructing two aperiodic subsets L and A of Zn, such that
|L|= n1n2, |A|= p1p2n3, and L+A = Zn.

Hence, L or A can serve as the inner rhythm and the other set as the
outer rhythm of such a canon.
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Vuza’s Algorithm

If Zn is not a Hajós group, Vuza presents an algorithm for
constructing two aperiodic subsets L and A of Zn, such that
|L|= n1n2, |A|= p1p2n3, and L+A = Zn.

Hence, L or A can serve as the inner rhythm and the other set as the
outer rhythm of such a canon.

Moreover, it is important to mention that there is some freedom for
constructing these two sets, and each of these two sets can be
constructed independently from the other one.
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Vuza’s Algorithm

If Zn is not a Hajós group, Vuza presents an algorithm for
constructing two aperiodic subsets L and A of Zn, such that
|L|= n1n2, |A|= p1p2n3, and L+A = Zn.

Hence, L or A can serve as the inner rhythm and the other set as the
outer rhythm of such a canon.

Moreover, it is important to mention that there is some freedom for
constructing these two sets, and each of these two sets can be
constructed independently from the other one.

He also proves that when L and A describe an RCMC-canon, then
also (kL,A), (kL,kA) have this property for all k∈ Z∗

n.
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Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal
category which can be constructed by his algorithm.
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Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal
category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p1 p2 n1 n2 n3 #L #A #
2 3 2 3 2 3 6 18
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Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal
category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p1 p2 n1 n2 n3 #L #A #
2 3 2 3 2 3 6 18
2 3 4 3 2 6 36 216
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Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal
category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p1 p2 n1 n2 n3 #L #A #
2 3 2 3 2 3 6 18
2 3 4 3 2 6 36 216
2 3 4 5 2 34 120 4080
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Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal
category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p1 p2 n1 n2 n3 #L #A #
2 3 2 3 2 3 6 18
2 3 4 3 2 6 36 216
2 3 4 5 2 34 120 4080
2 3 2 3 4 3 2808 8424
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Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal
category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p1 p2 n1 n2 n3 #L #A #
2 3 2 3 2 3 6 18
2 3 4 3 2 6 36 216
2 3 4 5 2 34 120 4080
2 3 2 3 4 3 2808 8424
2 5 2 3 2 9 6 54
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Enumeration of Vuza Canons

A Vuza canon is a regular complementary canon of maximal
category which can be constructed by his algorithm.

Enumeration of non-equivalent Vuza canons by construction:

p1 p2 n1 n2 n3 #L #A #
2 3 2 3 2 3 6 18
2 3 4 3 2 6 36 216
2 3 4 5 2 34 120 4080
2 3 2 3 4 3 2808 8424
2 5 2 3 2 9 6 54
2 5 2 5 2 125 20 2500
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Do there exist RCMC-canons which are not Vuza
canons?
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Do there exist RCMC-canons which are not Vuza
canons?

The answer is:
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Do there exist RCMC-canons which are not Vuza
canons?

The answer is: YES!

http://www.kfunigraz.ac.at/
http://www.fwf.ac.at/
http://www-ang.kfunigraz.ac.at/~fripert/


Home Page

Title Page

Contents

JJ II

J I

Page 22 of 24

Go Back

Full Screen

Close

Quit

Do there exist RCMC-canons which are not Vuza
canons?

The answer is: YES!

Construction: Let (L,A) be an RCMC-canon. Construct L′ by
replacing in L each occurrence of 1 by 11 and 0 by 00. And
construct A′ by replacing each 1 in A by 01 and 0 in A by 00. In
musical terms we divide each onset into 2 onsets. This way we
construct from the RCMC-canon (L,A) of length n an RCMC-canon
(L′,A′) of length 2n.
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Do there exist RCMC-canons which are not Vuza
canons?

The answer is: YES!

Construction: Let (L,A) be an RCMC-canon. Construct L′ by
replacing in L each occurrence of 1 by 11 and 0 by 00. And
construct A′ by replacing each 1 in A by 01 and 0 in A by 00. In
musical terms we divide each onset into 2 onsets. This way we
construct from the RCMC-canon (L,A) of length n an RCMC-canon
(L′,A′) of length 2n.

Among the 216 RCMC-canons of length 2·72= 144with |L|= 12
we did not find a canon which was constructed in this way from the
18 canons of length 72.
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From L equal to
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]
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From L equal to
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]
and A equal to
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1]
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From L equal to
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