τ1={{f(1),f(2),f(3),f(4),f(5),f(6)},{f(7),f(8),f(9),f(10),f(11),f(12)}},..
τ2={{f(2),f(3),f(4),f(5),f(6),f(7)},{f(8),f(9),f(10),f(11),f(12),f(1)}},..
τ3={{f(3),f(4),f(5),f(6),f(7),f(8)},{f(9),f(10),f(11),f(12),f(1),f(2)}},..
τ4={{f(4),f(5),f(6),f(7),f(8),f(9)},{f(10),f(11),f(12),f(1),f(2),f(3)}},..
τ5={{f(5),f(6),f(7),f(8),f(9),f(10)},{f(11),f(12),f(1),f(2),f(3),f(4)}},..
Therefore, a tone row f induces the trope sequence tf: {1,…,6}→ T, tf(i)=τi, 1≤ i≤ 6, where T is the set of all tropes in Z12. If we replace in the trope sequence of f the tropes by the numbers of their D12-orbits, we obtain a function sf: {1,…,6}→ {1,…,35}, the trope number sequence of f, where sf(i) is the number of the orbit D12(τi-1), 1≤ i≤ 6.
τ6={{f(6),f(7),f(8),f(9),f(10),f(11)},{f(12),f(1),f(2),f(3),f(4),f(5)}}...
The trope structure of the D12 × D12-orbit of f is the D6-orbit of sf under the natural action of the dihedral group on the domain of sf. For more details see Section 3.5 of [1].
In order to construct tone rows from their trope structure or to explore the set of all trope structures it is possible
Choose your program: